Bu sayfa, fırsat buldukça yeni ilaveler yapılmak suretiyle sürekli yenilenmektedir.

Son güncellenme: 11 Ocak 2007

anasayfa

DIŞ ÜLKELERDE YAPILAN 
BİTKİ HASTALIKLARI ÇALIŞMALARI
( 01 )
sonraki sayfa

Türkiye'de yapılan çalışmalar için tıklayın

 

KİTAPLAR

Agrios G. N., 1997. Plant Pathology, 4th ed. Academic Press, San Diego, New York.

American Phytopathological Society Committee on the Standardization of Common Names for Plant Diseases. 1994. Common Names for Plant Diseases. APS, St. Paul, MN.    ( http://www.apsnet.org/online/common/ )    

Goodman, R. N., and Novacky, A. J. 1994. The Hypersensitive Reaction in Plants to Pathogens. American Phytopathological Society, St. Paul.,MN, U.S.A.

Tuite, J., 1969. Plant Pathological Methods: Fungi and Bacteria. Burgess Publishing Company, Minneapolis, Minnesota.

Krieg, N. R., and Holt, J. G., eds. 1984. Bergey’s Manual of Systematic Bacteriology. Volume 1, Williams & Wilkins, Baltimore, MD, 964 pp.

Hickey K. D. (Ed.), 1986. Methods for Evluating Pesticides for Control of Plant Pathogens. APS Press, St. Paul, MN.

The Pesticides Trust, 1994. The List of Lists. The Pesticides Trust. London, UK.

Environmental Protection Agency, Pesticide Regulation Division. (Current) Acceptable Common Names and Chemical Names for the Ingredient Statement on Pesticide Labels. EPA, Washington, DC.

Anonymous. (Current) Farm Chemicals Handbook. Meister Publishing Co., Willoughby, OH.

Simone, G., T. Kucharek, M. Elliott and R. S. Mullin, 1993. Florida Plant Disease Control Guide. Institute of Food and Agricultural Sciences, Florida Cooperative Extension Service, Department of Plant Pathology, University of Florida, Gainesville, FL. 546 pp.

Kamal, M.L., and Mughal, S.M. 1968. Studies on plant diseases of south-west Pakistan. Tandojam, Pakistan: Agricultural Research Institute, Department of Agriculture, Government of West Pakistan.

Tjamos E. C., G. C. Papavizas and R. J. Cook (eds.), 1992. Biological Control of Plant Diseases: Progress and Challenges for the Future. Plenum Press, New York.

Campbell, C. L. and Madden, L. V., 1990. Introduction to Plant Disease Epidemio-logy. John Wiley & Sons, New York.

Walker J. C., 1952. Diseases of Vegetable Crops. McGraw-Hill Book Company, New York, NY, 699 pp.

Sherf, A. F. and A. A. Macnab, 1986. Vegetable diseases and their control, 2nd ed. John Wiley & Sons, New York, NY. 728 pp.

Allen, D.J. 1983. The pathology of tropical food legumes: disease resistance in crop improvement. New York, USA: John Wiley & Sons. 413 pp.

Strand, L. L. (ed.), 1998. Integrated Pest Management for Tomatoes, 4th Edition. University of California Statewide Integrated Pest Management Project, Division of Agriculture and Natural Resources. Publication 3274.

Jones, J.B., Jones, J.P., Stall, R.E. and T.A. Zitter, eds. 1991. Compendium of Tomato Diseases. American Phytopathological Society. St. Paul, MN.15. 73 pp.

Hooker, W. J. (ed.), 1981. Compendium of Potato Diseases. American Phytopatholo-gical Sociey. St. Paul, MN. 125 pp.

Maas J. L. (ed.), 1984. Compendium of Strawberry Diseases. APS Press, St. Paul, Minnesota.

Whitney, E. D., and Duffus, J. E. 1985. Compendium of Beet Diseases. The American Phytopathological Society, St. Paul, Minn. (In press).


Stuteville, D. L. and D. C. Erwin (eds.), 1990. Compendium of Alfalfa Disease, 2nd edn. APS Press, ST. Paul, Minnesota, USA, 88 pp.

 

Dowson, W. J., 1957. Plant Diseases Due to Bacteria. Second Edition, Cambridge at the University Press, Cambridge, MA, 266 pp.

Elliot, C., 1951. Manual of Bacterial Plant Pathogens. Chronica Botanica Company, Waltham, MA, 159 pp.

 

Skerman, V. B. D., McGowan, V., and Sneath, P. H. A., eds. 1980. Approved Lists of Approved Bacterial Names. 2nd ed. American Society for Microbiology, Washington, DC.

 

Swings, J.G. and Civerolo, E.L., 1993. Xanthomonas. Chapman and Hall, Suffolk, England, 399 pp.

 

Tjamos E. C. and Beckman C. H., 1989. Vascular Wilt Diseases of Plants: Basic Studies and Control. NATO ASI Series H: Cell Biology Springer-Verlag, Berlin

 

Singleton, L. L., J. D. Mihail and C.M. Rush (eds.), 1992. Methods for Research on Soilborne Phytopathogenic Fungi. APS Press, St. Paul, MN.

Farr, D. F., G. F. Bills, G. P. Chamuris and Rossman, A. Y., 1989. Fungi on Plants and Plant Products in the United States. American Phytopathological Society, APS Press, St. Paul, MN. 1252 pp.

Hawksworth, D. L., Kirk, P. M., Sutton, B. C., and Pegler, D.N., 1995. Ainsworth and Bisby's Dictionary of the Fungi. 8th ed. CAB International, Wallingford.
 

Erwin, D. C. and O. K. Ribero, 1996. Phytophthora Diseases Worldwide. APS Press, St. Paul. MN. 562 p.

Tucker, C. M., 1931. Taxonomy of the Genus Phytophthora de Bary. University of Missouri Agricultural Experiment Station, Bulletin No. 153. 208 pp.

Waterhouse, G. M., 1963. Key to the Species of Phytophthora de Bary. Mycological Papers, No. 92. Commonwealth Mycological Institute, Kew, Surrey, England. 22 pp.

Zentmyer, G. A., 1980. Phytophthora cinnamomi and the Diseases it Causes. Phytopathol. Monogr. 10  American Phytopathological Society, St. Paul, MN. 96 pp. 

Jarvis, W. R. (ed), 1977. Botryotinia and Botrytis Species: Taxonomy, Physiology and Pathogenicity. Agriculture Canada, Hignell Printing Limited, 195 pp.

Neergard, P., 1945. Danish Species of Alternaria and Stemphylium. Oxford University Press, London, 284 pp.

Van Regenmortel, M. H. V., Fauquet, C. M., Bishop, D. H. L., Carstens, E., Estes, M., Lemon, S., McGeoch, D., Wickner, R. B., Mayo, M. A., Pringle, C. R., and Maniloff, J. 1999. Virus Taxonomy. Seventh Report of the International Committee for the Taxonomy of Viruses. Academic Press, New York.

Culver, J. 1996. Viral avirulence genes. Pages 196-219 in: Plant Microbe Interactions. G. Stacey and N. T. Keen, eds. Chapman and Hall, NewYork. Vol. 13, No. 11, 2000 / 1193

McWhorter, F. P., 1960. Investigations of virus diseases of bean with special reference to virus etiology and varietal response. Report of the Fourth Annual Dry Bean Research Conference.

Zaumeyer, W. J., 1960. Legume viruses infectious to beans and methods for their identification. Report of the Fourth Annual Dry Bean Research Conference.


Morris C. E., P. C. Nicot and C. Nguyen Thé (eds.), 1996. Aerial Plant Surface Microbiology. Plenum Publisher, New York, ISBN 0-306-45382-7.

De Wit P. J. G. M., T. Bisseling and W. J. Stiekema (eds.), 2000. Biology of Plant-Microbe Interactions, Vol. 2.  ISPMP, St. Paul, Minnesota, USA.

Sambrook J., Fritsch E.F., Maniatis R., 1989. Molecular Cloning: A Laboratory Manual, Ed. 2 Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

Ascard, J., 1995. Thermal weed control by flaming: biological and technical aspect. PhD thesis, Swedish University of Agricultural Sciences, Alnarp, Sweden.

O’Brien, T. P. and McCully, M. E., 1981. The Study of Plant Structure: Principles and Selected Methods. Termarcarphi, Melbourne, Australia.

Jensen, W. A., 1962. Botanical Histochemistry. Mc-Graw-Hill, New York.

Bradbury, J.F., 1986. Guide to Plant Pathogenic Bacteria. CAB Int. Mycol. Inst.

Brunt, A.A., Crabtree,K., Dallwitz, M.J., Gibbs, A.J., Watson, L.(eds.)., 1996. Viruses of Plants. CAB International, Cambridge, 1184 pp

Smith, I.M., Dunez, J., Lelliott R.A., Phillips, D.H., Archer, S.A. (eds.)., 1988. European Handbook of Plant Diseases. Blackwell Scientific Publications, Oxford, 583 pp

Smith, I.M., McNamara, D.G., Scott, P.R., Holderness, M. (eds.)., 1997. Quarantine Pests of Europe. Second edition. Prepared by CABI and EPPO for the European Union. CAB International p 876.pp


&&&

 

MAKALELER

Chang, R. J., S. M. Ries and J. K. Pataky, 1992. Effects of temperature, plant age, inoculum concentration, and cultivar on the incubation period and severity of bacterial canker of tomato. Plant Disease 76: 1150-1155.

Chang, R. J., S. M. Ries, and J. K. Pataky, 1992. Local sources of Clavibacter michiganense subsp. michiganense in the development of bacterial canker on tomatoes. Phytopathology 82: 553-560.

Chang, R. J., S. M. Ries, and J. K. Pataky, 1992. Reductions in yield of processing tomatoes and incidence of bacterial canker. Plant Disease 76: 805-809.

Chang, R. J., S. M. Ries, and J. K. Pataky, 1991. Dissemination of Clavibacter michiganense subsp. michiganense by practices used to produce tomato transplants. Phytopathology 81:1276-1281.

Chang, R. J., S. M. Ries, and J. K. Pataky, 1993. Bacterial canker of tomato. Pg. 57-59, In: Proc. 1993 Ohio Fruit and Vegetable Growers Congress. Ohio AES, Piketon Center Misc. Publ. 93-1.

Chang, R. J., S. M. Ries, and J. K. Pataky, 1990. Bacterial canker of tomato. Trans. Ill. State Hort. Soc. 124: 67-70.

Chang, R. J., S. M. Ries, and J. K. Pataky, 1989. Evaluation of tomato cultivars for reactions to bacterial canker in Illinois. Pg. 204-209, in: Midwest Vegetable Variety Trial Report for 1989, Purdue University, AES Station Bull. No. 577.

Chang, R. J., S. M. Ries, J. K. Pataky, and D. A. Emmatty, 1988. Research on bacterial canker of tomato. Proc. Bacterial Canker Workshop, Ontario, Canada, Dec. 8-9, 1988.

Chang, R. J., S. M. Ries, and J. K. Pataky, 1989. Epidemiology and spread of Clavibacter michiganensis subsp. michiganensis on tomato. Phytopathology 79:1168.

M., Munnik, T. and Govers, F., 2002. Phospholipase D in Phytophthora infestans and its role in zoospore encystment. Molecular Plant Micobe Interactions 15: 939-946.

Laxalt, A.M., Latijnhouwers, M., van Hulten,M. and Govers, F., 2002. Differential expression of G protein alpha and beta subunit genes during development of Phytophthora infestans. Fungal Genetics and Biology 36: 137-146.

van der Lee, T., Testa, A., van ’t Klooster, J., van den Berg-Velthuis, G. and Govers, F., 2001. Chromosomal deletion in isolates of Phytophthora infestans correlates with virulence on R3, R10 and R11 potato lines. Molecular Plant Micobe Interactions, 14: 1444-1452.

Govers, F., 2001. Misclassification of pest as ‘fungus’ puts research on wrong track. Nature 411: 633.

Whisson, S.C., van der Lee, T., Bryan, G.J., Waugh, R., Govers, F. and Birch, P.R.J., 2001. Physical mapping across an avirulence locus of Phytophthora infestans using a high representation, large insert bacterial artificial chromosome library. Molecular and General Genomics 266: 289-295.

Vleeshouwers, V.G.A.A., Martens, A., van Dooijeweert, W., Colon, L.T., Govers, F. and Kamoun, S., 2001. Ancient diversification of the Pto kinase family preceded speciation in Solanum. Molecular Plant Micobe Interactions 14: 996-1005.

van der Lee, T., Robold, A., Testa, A., van ‘t Klooster, J.W. and Govers, F., 2001. Mapping of avirulence genes in Phytophthora infestans with Amplified Fragment Length Polymorphism Markers selected by bulked segregant analysis. Genetics 157: 949-956.

Vleeshouwers, V.G.A.A., van Dooijeweert, W., Govers, F., Kamoun, S. and Colon, L.T., 2000. Does basal PR gene expression in Solanum species contribute to non-specific resistance to Phytophthora infestans? Physiological and Molecular Plant Pathology 57: 35–42.

Zwankhuizen, M.J., Govers, F. and Zadoks, J.C., 2000.
Inoculum sources and genotypic diversity of Phytophthora infestans in Southern Flevoland, The Netherlands. European Journal of Plant Pathology 106: 667-680.

Vleeshouwers, V.G.A.A., van Dooijeweert, W., Govers, F., Kamoun, S. and Colon, L.T., 2000. The hypersensitive response is associated with host and nonhost resistance to Phytophthora infestans. Planta 210: 853-864.

Van 't Klooster, J.W., Van den Berg-Velthuis, G., Van West, P. and Govers, F., 2000. Tef1, a Phytophthora infestans gene encoding elongation factor 1a. Gene 249: 145-151.

Kamoun, S., Dong, S., Huitema, E., Torto, G.A., van West, P., Vleeshouwers, V.G.A.A. and Govers, F., 2000. Dissection of nonhost resistance of Nicotiana to Phytophthora infestans. In: Biology of Plant-Microbe Interactions – volume 2 (eds. P.J.G.M. de Wit, T. Bisseling & W. J. Stiekema). ISPMP St. Paul Minnesota USA. pp. 180-185.

Govers, F., 1999. Research investments in Phytophthora infestans: how to get to know the pathogen? In: Late blight: a threat to global food security, Volume 1, Proceedings of the Global Initiative on Late Blight Conference, Quito, Ecuador (eds. Crissman, L & Lizarraga, C.) CIP Lima Peru, 69-72.

Kamoun, S., Hraber, P., Sobral, B., Nuss, D.L. and Govers, F., 1999. Initial assessment of gene diversity for the oomycete pathogen Phytophthora infestans based on expressed sequences. Fungal Genetics and Biology 28: 94-106.

Kamoun, S., Honée, G., Weide, R., Laugé, R., Kooman-Gersmann M., de Groot, K.E., Govers, F. and de Wit, P.J.G.M., 1999. The fungal gene Avr9 and the Oomycete Gene inf1 confer avirulence to potato virus X on tobacco. Molecular Plant-Microbe Interactions 12: 459-462.

Van West, P., Kamoun, S., Van 't Klooster, J.W. and Govers, F., 1999. Ric1, a Phytophthora infestans gene with homology to stress-induced genes. Current Genetics 36: 310-315.

Van West, P., Kamoun, S., Van 't Klooster, J.W. and Govers, F., 1999. Inter-nuclear gene silencing in Phytophthora infestans. Molecular Cell 3: 339-348.

Vleeshouwers, V.G.A.A., van Dooijeweert, W., Keizer, P.L.C., Sijpkes, L., Govers, F. and Colon, L.T., 1999. A laboratory assay for Phytophthora infestans resistence in various Solanum species reflects the field situation. European Journal of Plant Pathology 105: 241-250.

Kamoun, S., van West, P., Vleeshouwers, V.G.A.A., de Groot, K.E. and Govers, F., 1998. Resistance of Nicotiana benthamiana to Phytophthora infestans is mediated by the recognition of elicitor protein INF1. The Plant Cell, 10: 1413-1426.

Kamoun, S., van der Lee, T., van den Berg-Velthuis, G., de Groot, K.E. and Govers, F., 1998. Loss of production of the elicitor protein INF1 in the clonal lineage US-1 of Phytophthora infestans. Phytopathology 88: 1315-1323.

Zwankhuizen, M.J., Govers, F. and Zadoks, J.C., 1998. Development of potato late blight epidemics: disease foci, disease gradients, and infection sources. Phytopathology 88: 754-763.

Kamoun, S., van West, P., and Govers, F., 1998. Quantification of late blight resistance of potato using transgenic Phytophthora infestans expressing ß-glucuronidase. European Journal of Plant Pathology 104: 521-525.

Van West, P., de Jong, A.J., Emons, A-M., Judelson, H.S. and Govers, F., 1998. The ipiO gene of Phytophthora infestans is highly expressed in invading hyphae. Fungal Genetics and Biology 23: 126-138.

Van der Lee, T., De Witte, I., Drenth, A., Alfonso, C. and Govers, F., 1997. AFLP linkage map of the oomycete Phytophthora infestans. Fungal Genetics and Biology 21: 278-291.

 

Basım, H. and Stall, R. E., 1996. Plant-inducible horizontal chromosomal gene transfer among strains of Xanthomonas axonopodis pv. vesicatoria by conjugation. 8th International Con gress of Molecular Plant-Microbe Interactions, Knoxville, Tennessee, USA, X14.

Basım, H. and Stall, R. E., 1996. Chromosomal gene transfer among strains of Xanthomonas axonopodis pv. vesicatoria by conjugation. Phytopathology 86: S77.

Basım, H., Stall, R. E., and Jones, J., 1999. Chromosomal gene transfer among strains of Xanthomonas axonopodis pv. vesicatoria by conjugation. Phytopathology 89: 1044-49.

Basım, H. and Stall, R. E., 1996. A unique chromosomal copper gene cluster from Xanthomonas axonopodis pv. vesicatoria. Phytopathology 86: S15-S16.

Hacıoğlu, E., Basım, H. and Stall, R. E., 1996. Rarely cutting restriction endonucleases for determining genome size and physical map of the chromosome of Xanthomonas axonopodis pv. vesicatoria. Phytopathology 86: S77-S78.

Basım, H., 1996. Horizontal chromosomal gene transfer among strains of Xanthomonas axonopodis pv. vesicatoria by conjugation. Doktora Tezi (Tez Yöneticisi; Prof. Dr. Robert E. STALL). University of Florida, Department of Plant Pathology, Gainesville, FL. USA. 137p.

Çıtır, A. and E. H. Varney, 1974. Endive Mosaic in New Jersey. Caused by Turnip Mosaic Virus. Abstract. Proceeding of The American Phytopathological Society. Vol. 1, p.134.

Çıtır, A., 1975. Identification, Bioassay, Ecology and Control of An Endive Mosaic Virus in New Jersey. Rutgers University New Brunswick, New Jersey, U.S.A. Doktora Tezi, 100 pp.

Alabouvette, C., Lemanceau, P., and Steinberg, C., 1993. Recent advances in the biological control of Fusarium wilts. Pestic. Sci. 37: 365-373.

Burbage, D. A., Sasser, M., and Lumsden, R.D. 1982. A medium selective for Pseudomonas cepacia. (Abstr.) Phytopathology 72:706.

Cook, R. J. 1993. Making greater use of introduced microorganisms for biological control of plant pathogens. Annu. Rev. Phytopathol. 31: 53-80.

Couteaudier, Y., 1992. Competition for carbonin soil and rhizosphere; a mechanism involved in biological control of Fusarium wilts. Pages 99-104 in: Biological Control of Plant Diseases: Progress and Challenges for the Future. E. C. Tjamos, G. C. Papavizas,and R. J. Cook, eds. Plenum Press, New York.

Datnoff, L. E., Nemec, S.,
and Pernezny, K., 1995. Biological control of Fusarium crown and root rot of tomato in Florida using Trichoderma harzianum and
Glomus intraradices. Biol. Control 5: 427-431.

De Cal, A., Pascual, S., Larena, I, and Melga-rejo, P., 1995. Biological control of Fusarium oxysporum f. sp. lycopersici. Plant Pathol. 44: 909-917.

Duffy, B. K., Simon, A., and Weller, D. M., 1996. Combination of Trichoderma koningii with fluorescent pseudomonads for control of take-all on wheat.
Phytopathology 86:188-194.

Duffy, B. K., and Weller, D. M. 1995. Use of Gaemannomyces graminis var. graminis alone and in combination with fluorescent Pseudomonas spp. to suppress take-all of wheat. Plant Dis. 79: 907-911.

Elad, Y., Chet, I., and Henis, Y., 1981. A selective medium for improving quantitative isolation of Trichoderma spp. from soil. Phytoparasitica 9: 59-67.

Fuchs, J.G., Moënne-Loccoz, Y., and Défago, G., 1997. Nonpathogenic Fusarium oxysporum strain Fo47 induces resistance to Fusarium wilt of tomato. Plant Dis. 81: 492-496.

Harman, G. E., 1991. Seed treatments for biological control of plant disease. Crop Prot. 10: 166-171.

Hebbar, K.P., Atkinson, D., Tucker, W., and Dart, P. J., 1992. Suppression of Fusarium moniliforme by maize root-associated Pseudomonas cepacia. Soil Biol. Biochem. 24: 1009-1020.

Jarvis, W. R., 1988. Fusarium crown and root rot of tomatoes. Phytoprotection 69: 49-64.

Larkin, R. P. and Fravel, D. R., 1996. Efficacy of various biocontrol organisms in the control of Fusarium wilt of tomato. Phytopathology 86: S83.

Larkin, R. P., Hopkins, D. L. and Martin, F.N., 1993. Ecology of Fusarium oxysporum f.sp. niveum in soils suppressive and conducive to Fusarium wilt of watermelon. Phytopathology 83: 1105-1116.

Larkin, R. P., Hopkins, D. L. and Martin, F. N., 1996. Suppression of Fusarium wilt of watermelon by nonpathogenic Fusarium oxysporum and other microorganisms recovered from a disease-suppressive soil. Phytopathology 86: 812-819.

Leeman, M., Den Ouden, F. M., van Pelt, J. A., Cornelissen, Matamala-Garros, A., Bakker, P. A. H. M. and Schippers, B., 1996. Suppression of Fusarium wilt of radish by co-inoculation of fluorescent Pseudomonas spp. and root-colonizing fungi. Eur. J. Plant Pathol. 102: 21-31.

Leeman, M., Den Ouden, F. M., van Pelt, J.A., Hendrickx, M. J., Scheffer, R.,
Bakker, P.A. H. M. and Schippers, B., 1995.
Biocontrol of Fusarium wilt of radish in commercial greenhouse trials by seed treatment with Pseudomonas fluorescens WCS374. Phytopathology 85: 1301-1305.

Lemanceau, P., 1989. Role of competition for carbon and iron in mechanisms
of soil sup-pressiveness to Fusarium wilts. Pages 385-395 in: Vascular Wilt
Diseases of Plants. E. C.Tjamos and C. Beckman, eds. Springer-Verlag, New
York.

Lemanceau, P. and Alabouvette, C., 1991. Biological control of fusarium
diseases
by fluorescent Pseudomonas and non-pathogenic Fusarium. Crop Prot. 10: 279-286.

Lemanceau, P., Bakker, P. A. H. M., de Kogel, W. J. and Alabouvette, C.,
1992.
Effect of pseudobactin 358 production by Pseudomonas putida WCS358
on suppression of Fusarium wilt of carnations by nonpathogenic Fusarium
oxysporum
Fo47. Appl. Environ. Microbiol. 58: 2978-2982.

Lemanceau, P., Bakker, P. A. H. M., De Kogel, W. J., Alabouvette, C. and
Schippers, B., 1993.
Antagonistic effect on nonpathogenic Fusarium oxysporum
strain Fo47 and pseudobactin 358 upon pathogenic Fusarium oxysporum f. sp.
dianthi.
Appl. Environ. Microbiol. 59: 74-82.

Lewis, J. A., Fravel, D. R., and Papavizas, G.C., 1995. Cladorrhinum
foecundissimum:
a potential biological control agent for the reduction of
Rhizoctonia solani. Soil Biol. Bio-chem. 27: 863-869.

Lewis, J. A., Lumsden, R. D. and Locke, J. C., 1996. Biocontrol of damping-off diseases caused by Rhizoctonia solani and Pythium ultimum with alginate prills of Gliocladium virens, Trichoderma hamatum, and various food bases. Biocontrol Sci. Technol. 6:163-173.

Lewis, J. A., and Papavizas, G. C., 1985. Effect of mycelial preparations of
Trichoderma and Gliocladium on populations of Rhizoctonia solani and the
incidence of damping-off. Phytopathology 75: 812-817.

Lewis, J. A. and Papavizas, G. C., 1992. Potential of Laetisaria arvalis for
the biocontrol of Rhizoctonia solani. Soil Biol. Bio-chem. 24: 1075-1079.

Lewis, J. A. and Papavizas, G. C., 1993. Stilbella aciculosa: a potential
biocontrol fungus against Rhizoctonia solani. Biocontrol Sci. Technol. 3: 3-11.

Lewis, J. A., Papavizas, G. C., and Hollen-beck, M. D., 1993. Biological
control of damping-off
of snap beans caused by Sclerotium rolfsii in the
greenhouse and field with formulations of Gliocladium virens. Biol. Control
3: 109-115.

Liu, L., Kloepper, J. W. and Tuzun, S., 1995. Induction of systemic resistance in cucumber against Fusarium wilt by plant growth-promoting rhizobacteria. Phytopathology 85: 695-698.

Lumsden, R. L. and Locke, J. C., 1989. Biological control of damping-off caused by Pythium ultimum and Rhizoctonia solani with Gliocladium virens in soilless mix. Phytopathology 79: 361-366.

Mandeel, Q. and Baker, R., 1991. Mechanisms involved in biological control of Fusarium wilt of cucumber with strains of nonpathogenic Fusarium oxysporum. Phytopathology 81: 462-469.

Marois, J. J., Mitchell, D. J. and Sonoda, R. M., 1981. Biological control of Fusarium crown and root rot of tomato under field conditions. Phytopathology 71: 1257-1260.

Minuto, A., Migheli, Q. and Garabaldi, A., 1995. Evaluation of antagonistic strains of Fusarium spp. in the biological and integrated control of Fusarium wilt of cyclamen. Crop Prot. 14: 221-226.

 

Paulitz, T. C., Park, C. S. and Baker, R., 1987. Biological control of Fusarium wilt of cucumber with nonpathogenic isolates of Fusarium oxysporum. Can. J. Microbiol. 33: 349-353.

Park, C. S., Paulitz, T. C. and Baker, R., 1988. Biocontrol of Fusarium wilt of cucumber resulting from interactions between Pseudomonas putida and nonpathogenic isolates of Fusarium oxysporum. Phytopathology 78: 190-194.

Pierson, E. A. and Weller, D. M., 1994. Use of mixtures of fluorescent pseudomonads to suppress take-all and improve the growth of wheat. Phytopathology 84: 940-947.

Postma, J. and Rattink, H., 1992. Biological control of Fusarium wilt of carnation with a non-pathogenic isolate of Fusarium oxysporum. Can. J. Bot. 70: 1199-1205.

Raaijmakers, J. M., Leeman, M., van Oor-schot, M. M. P., van der Sluis, I., Schippers, B., and Bakker, P. A. H. M., 1995. Dose-response relationships in biological control of Fusarium wilt of radish by Pseudomonas spp. Phytopathology 85: 1075-1081.

Sands, D. C. and Rovira, A. R., 1970. Isolation of fluorescent pseudomonads with a selective medium. Appl. Microbiol. 20: 513-514.

Scher, F. M. and Baker, R., 1982. Effect of Pseudomonas putida and a synthetic ironchelator on induction of suppressiveness to Fusarium wilt pathogens. Phytopathology 72: 1567-1573.

Sivan, A. and Chet, I., 1993. Integrated control of fusarium crown and root rot of tomato with Trichoderma harzianum in combination with methyl bromide or soil solarization. Crop Prot. 12: 380-386.

Taylor, A. G., Harman, G. E. and Nielsen, P. A., 1994. Biological seed treatments usingTrichoderma harzianum for horticulturalcrops. Hortic. Technol. 4: 105-108.

UNEP Methyl Bromide Technical Options Committee., 1994. Montreal protocol on substances that deplete the ozone layer: 1994 report of the MBTOC. EPA-430/K94/029.

Van Peer, R., Niemann, G. J. and Schippers, B., 1991. Induced resistance and phytoalexin accumulation in biological control of Fusarium wilt of carnation by Pseudomonas sp. strain WCS417r. Phytopathology 81: 1508-1512.

Weller, D. M., 1988. Biological control of soilborne plant pathogens in the rhizosphere with bacteria. Annu. Rev. Phytopathol. 26: 379-407.

Weller, D. M. and Cook, R. J., 1983. Suppression of take-all of wheat by seed treatments with fluorescent pseudomonads. Phytopathology 73: 463-469.

Zhang, J., Howell, C. R. and Starr, J. L., 1996. Suppression of Fusarium colonization of cotton roots and Fusarium wilt by seed treatments with Gliocladium virens and Bacillus subtilis. Biocontrol Sci. Technol. 6: 175-187.

Attitalla, I. H., P. Quintanilla, and S. Brishammar., 1998. Induced resistance in tomato plants against Fusarium wilt invoked by Fusarium sp, salicylic acid and Phytophthora cryptogea. Acta Phytopathologica et Entomologica Hungarica 33: 89-95.

Benhamou, N., and R. R. Bélanger., 1998. Benzothiadiazole-mediated induced resistance to Fusarium oxysporum f. sp. radicis-lycopersici in tomato. Plant Physiology 118:1203-1212.

Campbell, B. C. and S. S. Duffey., 1979. Tomatine and parasitic wasps: potential incompatibility of plant antibiosis with biological control. Science 204: 700-702.

Cohen, Y., U. Gisi, and T. Niderman., 1993. Local and systemic protection against Phytophthora infestans induced in potato and tomato plants by jasmonic acid and jasmonic methyl ester. Phytopathology 83: 1054-1062.

Constabel, C. P., D. R. Bergey and C. A. Ryan, 1995. Systemin activates synthesis of wound-inducible tomato leaf polyphenol oxidase via the octadecanoid defense signalling pathway. Proceedings of the National Academy of Sciences USA 92: 407-411.

Doares, S. H., Narvaez-Vasquez, J., Conconi, A. and Ryan, C. A., 1995. Salicylic acid inhibits synthesis of proteinase inhibitors in tomato leaves induced by systemin and jasmonic acid. Plant Physiology 108: 1741-1746.

Doherty, H. M., Selvendran, R. R. and D. J. Bowles., 1988. The wound response of tomato plants can be inhibited by aspirin and related hydroxybenzoic acids. Physiological and Molecular Plant Pathololgy 33: 377-384.

Enyedi, A. J., N. Yalpani, P. Silverman and I. Raskin., 1992. Signal molecules in systemic plant resistance to pathogens and pests. Cell 70:879-886.

Farmer, E. E., R. R. Johnson, and C. A. Ryan., 1992. Regulation of expression of proteinase inhibitor genes by methyl jasmonate and jasmonic acid. Plant Physiology 98: 995-1002.

John Wiley, New York. Hatcher, P. E. 1995. Three-way interactions between plant pathogenic fungi, herbivorous insects and their host plants. Biological Review 70: 639-694.

Herrmann, G., Lehmann, J., Peterson, A., Sembdner, G., Weidhase, R. A. and Parthier, B., 1989. Species and tissue specificity of jasmonate induced abundant proteins. Plant Physiology 134:703-709.

Inbar, M., H. Doostar, R. M. Sonoda, G. L. Leibee and R. T. Mayer., 1998. Elicitors of plant defense systems reduce insect densities and disease incidence. Journal of Chemical Ecology 24: 135-150.

Linhart, Y. B., 1991. Disease, parasitism and herbivory: multidimensional challenges in plant evolution. Trends in Ecology and Evolution 6: 392-396.

Niki, T., I. Mitsuhara, S. Seo, N. Ohtsubo, and Y. Ohashi, 1998. Antagonistic effect of salicylic acid and jasmonic acid on the expression of pathogenesis-related (PR) protein genes in wounded mature tobacco leaves. Plant and Cell Physiology 39: 500-507.

Peña-Cortés, H., T. Albrecht, S. Prat, E. W. Weiler and L. Willmitzer, 1993. Aspirin prevents wound-induced gene expression in tomato leaves by blocking jasmonic acid biosynthesis. Planta 191: 123-128.

Reinbothe, S., B. Mollenhauer and C. Reinbothe., 1994. JIPs and RIPs: The regulation of plant gene expression by jasmonates in response to environmental cues and pathogens. Plant Cell 6:1197-1209.

Ryals, J. A., U. H. Neuenschwander, M. G. Willits, A. Molina, H. Y. Steiner and M. P. Hunt, 1996. Systemic acquired resistance. Plant Cell 8: 1809-1819.

Schneider, M., P. Schweizer, P. Meuwly and J. P. Métraux, 1996. Systemic acquired resistance in plants. International Review of Cytology 168: 303-339.

Sano, H. and Y. Ohashi, 1995. Involvement of small GTP-binding proteins in defense signal-transduction pathways of higher plants. Proceedings of the National Academy of Sciences USA 92: 4138-4144.

Stout, M. J., Fidantsef, A. L., Duffey, S. S. and Bostock, R. M., 1999. Signal interactions in pathogen and insect attack: systemic plant-mediated interactions between pathogens and herbivores of the tomato, Lycopersicon esculentum. Physiological and Molecular Plant Pathology (in press).

Stout, M. J., K. V. Workman, R. M. Bostock, and S. S. Duffey, 1998. Specificity of induced resistance in the tomato, Lycopersicon esculentum. Oecologia 113: 74-91.

Thaler, J. S., M. J. Stout, R. Karban, and S. S. Duffey, 1996. Exogenous jasmonates simulate insect wounding in tomato plants, Lycopersicon esculentum, in the laboratory and field. Journal of Chemical Ecology 22: 1767-1781.

Thaler, J. S., A. L. Fidantsef, S. S. Duffey, and R. M. Bostock, 1999. Tradeoffs in plant defense against herbivores and pathogens: a field demonstration. Journal of Chemical Ecology (in press).
 

Alexander, S.A., Caldwell, J. S., Hohlt, H.E., Nault, B. A., O’Dell, C.R., Sterrett, S.B., and Wilson, H.P., 2000. Virginia Commercial Vegetable Production Recommendations. Virginia Coop. Ext. Serv.: Publ. No. 456-420, 176 pp.

Alexander, S. A., Kim, S. H. and Waldenmaier, C. M., 1999. First report of copper-tolerant Pseudomonas syringae pv. tomato in Virginia. Plant Dis. 83: 964.

Amemiya, Y., Hirano, K. and Jida, W., 1985. Induction of resistance to verticillium wilt in tomato. Technical Bulletin, Chiba University 36: 135-139.

Amemiya, Y., Yamaguchi, K., Hirano, K. and Jida, W., 1986. Suppression of fusarium wilt in tomato by use of cross protection. Technical Bulletin, Chiba University 37: 79-83.

Barratt, R.W. and Richards, M. C., 1944. Physiological maturity in relation to Alternaria blight in the tomato. (Abstract) Phytopathology 34: 997.

Bashan, Y. and Okon, Y., 1986. Internal and external infections of fruits and seeds of peppers by Xanthomonas campestris pv. vesicatoria. Can. Jour. of Botany 64: 2865-2871.

Bashan, Y., Okon, Y. and Henis, Y., 1978. Infection studies of Pseudomonas tomato, causal agent of bacterial speck of tomato. Phytoparasitica 6: 134-143.

Bashan, Y., Okon, Y. and Henis, Y., 1981. Scanning electron and light microscopy of infection and symptom development in tomato leaves infected with Pseudomonas tomato. Physiol. Plant Path. 19: 139-144.

Bashi, E. and Rotem, J., 1974. Adaptation of four pathogens to semi-arid habitats as conditioned by penetration rate and germinating spore survival. Phytopathology 64: 1035-1039.

Bashi, E. and Rotem, J., 1976. Induction of sporulation of Alternaria porri f.sp. solani in vivo. Physiol. Plant Pathol. 14: 83-90.

Basim, H., Stall, R.E., Minsavage, G.V. and Jones, J.B., 1999. Chromosomal gene transfer by conjugation in the plant pathogen Xanthomonas axonopodis pv. vesicatoria. Phytopathology 89: 1044-1049.

Basu, P.K., 1971. Existence of chlamydospores of Alternaria porri f.sp. solani as over-wintering propagules in soil. Phytopathology 61: 1347-1350.

Bosshard-Heer, E. and Vogelsanger, J., 1977. Ability of Pseudomonas tomato (Okabe) Alstatt (causing speck of tomato) to survive in different soils. Phytopathology Z 90: 193-202.

Bryan, M.K., 1933. Bacterial speck in tomato. Phytopathology 23: 897-904.

Cohen, Y. and Roten, J., 1970. The relationship of sporulation to photosynthesis in some obligatory and facultative parasites. Phytopathology 60: 1600-1604.

Cox, R.S., 1966. The role of bacterial spot in tomato production in South Florida. Plant Disease Reporter 50: 699-700.

Datar, V.V. and Mayee, C.D., 1981. Assesment of losses in tomato yield due to early blight. Indian Phytopathol. 34: 191-195.

Devash, Y., Okon, Y. and Henis, Y., 1980. Survival of Pseudomonas tomato, bacterial speck disease of tomato in soil and seeds. Phytopathol.: Z: 99, 175-185.

Diachun, S. and Valleau, W.D., 1946. Growth and overwintering of Xanthomonas vesicatoria in association with wheat roots. Phytopathology 36: 277-80.

Ellis, J.B. and Martin, G.B., 1882. Macrosporium solani E&M. American Naturalist 16: 1003.

Ellis, M.B. and Gibson, I.A.S., 1975. Alternaria solani. CMI Descriptions of pathogenic fungi and bacteria No. 475.

Fang, C.T., Lin, C.F. and Chu, C.L., 1957. A preliminary study on the disease cycle of bacterial leaf blight of rice. Acta Phytopathologica 2: 173-185.

Getz, S., Fullbright, D.W. and Stephens, C.T., 1983. Scanning electron microscopy of infection sites and lesion development on tomato fruit infected with Pseudomonas syringae pv. tomato. Phytopathology 73: 39-43.

Getz, S., Stephens, C.T. and Fullbright, D.W., 1983. Influences of developmental stage on susceptibility of tomato fruit to Pseudomonas syringae pv. tomato. Phytopathology 73: 36-38.

Harman, E.G., Norton, J.M., Stasz, T.E. and Humaydon, H.S., 1987. Nyolate seed treatment of Brassica spp. to eradicate or reduce black rot caused by Xanthomonas campestris pv. campestris. Plant Dis. 71: 27-30.


Hirano, S.S. and Upper, C.D., 1983. Ecology and epidemiology of foliar bacterial plant pathogens. Annual Review of Phytopathology 21: 243-269.

Horsfall, J. G., and Barratt, R. W., 1945. An improved grading system for measuring plant diseases. Phytopathology 35: 655.

Horsfall, J.G. and Dimond, A.E., 1957. Interactions of tissue, sugar, growth substances, and disease susceptibility. Z. Pflanzenkrankh. Pflanzenschutz 64: 415-421.

Ivanyuk, V.G. Chalova, L.I., Yurganova, L.A., Karavaeva, K.A. and Ozeretskovskaya, O.L., 1990. Immunization of tomato plants by biogenic inducer of defense responses. Vestnik Sel’skokhozaistvennoi Nauki 5: 144-146.

Jones, J.B., Bouzar, H, Somodi, G.C., Stall, R.E., Pernezny, K., El-Morsy, G. and Scott, J.W., 1998. Evidence for the preemptive nature of tomato race 3 of Xanthomonas campestris pv. vesicatoria in Florida. Phytopathology 88: 33-38.

Jones, J.B. Pohronezny, K.L., Stall, R.E. and Jones, J. P., 1986. Survival of Xanthomonas campestris pv. vesicatoria in Florida on tomato crop residues, weeds, seeds, and volunteer tomato plants. Phytopathology 76: 430-434.

Jones, L.R., 1892. The new potato disease or early blight. Sixth Annual Report of Vermont Agricultural Experiment Station, 6: 66-70.

Kessman, H., Stauv, T., Hoffmann, C., Maetzke, T. and Herzog, J., 1994. Induction of systemic acquired disease resistance in plants by chemicals. Annual Review of Phytopathology 32: 439-459.

Lai, M., Panopoulos, N.J. and Shaffer. S., 1977. Transmission of T Plasmids among Xanthomonas spp. and other plant pathogenic bacteria. Phytopathology 67: 1044-1050.

Lockwood, J. L., 1960. Lysis of mycelium of plant pathogenic fungi by natural soil. Phytopathology 50: 787-789.

Louws, F. J., Wilson, M., Campbell, H.L., Cuppels, D.A., Jones, J.B., Shoemaker, P.B., Sahin, F. and Miller, S.A., 2001. Field control of bacterial spot and bacterial speck of tomato using a plant activator. Plant Dis.: 85:481-488.

Madden, L., Pennypacker, S.P. and Mcnab, A.A., 1978. FAST, a forecast system for Alternaria solani on tomato. Phytopathology 68: 1354-1358.

Marco, G.M. and Stall, R.E., 1983. Control of bacterial spot of pepper initiated by strains of Xanthomonas campestris pv. vesicatoria that differ in sensitivity to copper. Plant Dis. 67: 779-781.

Martin, W.H., 1918. Dissemination of Septoria lycopersici Speg. by insects and pickers. Phytopathology 8: 365-372.

McInnes, T.B. Gtaitis, R. D., McCarter, S. M., Jaworski C.A. and Phatak S.C., 1988. Airborne dispersal of bacteria in tomato and pepper transplant fields. Plant Dis. 72: 575-579.

Minsavage, G.V., Dahlbeck, D., Whalen, M.C., Kearny, B., Bonas, U., Staskawicz, B.J. and Stall, R.E., 1990. Gene-for-gene relationships specifying disease resistance in Xanthomonas campestris pv. vesicatoria-pepper interactions. Molecular Plant Microbe Interactions 3: 41-47.

Moore W.D., 1942. Some factors affecting the infection of tomato seedlings by Alternaria solani. Phytopathology 32: 399-403.

Moore W.D. and Thomas, H.R., 1943. Some cultural practices that influence the development of Alternaria solani on tomato seedlings. Phytopathology 33: 1176-1190.

Nash, A.F. and Gardner, R.G., 1988. Tomato early blight resistance in a breeding line derived from Lycopersicon hirsutum PI 126445. Plant Dis. 72: 206-209.

Nayudu, M.V. and Walker, J.C., 1960. Bacterial spot of tomato as influenced by temperature and by age and nutrition of the host. Phytopathology 50: 360-364.
 

Okabe, N., 1933. Bacterial diseases in plants occurring in Formosa. II. Journal of the Society of Tropical Agriculture: 5: 26-36.

Ozeretskovskaya, O.L., 1995. Induced resistance in the Solanaceae. Pages 31-62 in: Induced resistance to disease in plants. R Hammerschmidt and J. Kuc, eds. Kluwer Acedemic Publishers, Norwell, MA.

Pennypacker, S.P., Madden, L.V. and McNab, A.A., 1983. Validation of an early blight forecasting system for tomatoes. Plant Dis. 67: 287-289.

Pernezny, K and Collins, J., 1997. Epiphytic populations of Xanthomonas campestris pv. vesicatoria on pepper: relationships to host-plant resistance and exposure to copper sprays. Plant Dis. 81: 791-794.

Pohronezny, K. and Volin, R.B., 1983. The effect of bacterial spot of yield and quality of fresh market tomatoes. HortScience 18: 69-70.

Prohronezny, K.L., Moss, M.A., Dankers, W. and Schenk, J., 1990. Dispersal and management of Xanthomonas campestris pv. vesicatoria during thinning of direct seeded tomato. Plant Dis. 74: 800-805.

Pohronezny, K., Hewitt, M., Infante, J. and Datnoff, L., 1992. Wind and wind-generated sand injury as factors in infection of pepper by Xanthomonas campestris pv. vesicatoria. Plant Dis. 76: 1036-1039.

Pound, G.S., 1951. Effect of air temperature on incidence and development of early blight disease of tomato. Phytopathology 41: 127-135.

Rands, R.D., 1917. Early blight of potato and related plants. Wisconsin Exp. Station, Bulletin 42: 1-48.

Ramos, L.J. and Volin, R.B., 1987. Role of stomatal opening and frequency on infection of Lycopersicon spp. by Xanthomonas campestris pv. vesicatoria. Phytopathology 77: 1311-1317.

Ray, M. J., 1901. Les maladies cryptogamiques des vegetaux. Rev. Gen. Bot. XII: 145-151.

Reid, W.D., 1948. Tomato speck of tomato. New Zeal. Jour. Sci. and Technol. A, 30: 5-8.

Ritchie, D.F. and Dittapongpitch, V., 1991. Copper and streptomycin resistant strains and host differentiated races of Xanthomonas campestris pv. vesicatoria in North Carolina. Plant Dis. 75: 733-736.

Ritchie, D.F., Louws, F.J., Kousik, C.S., Romero, A.M. and Pollard, D.W., 1997. Evaluating the plant activator CGA-245704 50 WG for control of bacterial spot of tomato. Fungicide and Nematicide tests 52: 188.

Romantschuk, M., 1993. Fimbriae (pilus) mediated attachment of Psuedomonas syringae, Xanthomonas campestris and Erwinia rhapontici to plant surfaces, in Molecular Mechanisms of Botanical Virulence (eds C.I. Kado and J. Crosa), Kluwer Academic Publishers, Dordrecht.

Ross, A.F., 1961. Systematic acquired resistance induced by localized virus infections in plants. Virology 14: 340-358.

Rotem, J., 1964. The effect of weather on dispersal of Alternaria spores in a semi-arid region of Isreal. Phytopathology 54: 628-632.

Rotem, J., 1968. Thermoxerophytic properties of Alternaria porri f. sp. solani. Phytopathology 54: 1284-1287.

Schaad, N.W., Sitterly, W.R. and Humaydan, H., 1980. Relationship of incidence of seed-borne Xanthomonas campestris to black rot of crucifers. Plant Dis. 64: 91-92.

Schaad, N.W., Vidaver, A.K., Lacy, G.H., Rudolph, K. and Jones, J.B., 2000. Evaluation of proposed amended names of several Pseudomonads and Xanthomonads and recommendations. Phytopathology 90: 208-213.

Schein, R.D., 1964. Comments on the moisture requirements of fungus germination. Phytopathology 54: 1427.

Schneider, R.W., and Grogan R.G., 1977. Bacterial speck of tomato (Pseudomonas tomato): sources of inoculum and establishment of a resident population. Phytopathology 67: 898-902.

Schultz, T., Gabrielson, R.L. and Olson, S., 1986. Control of Xanthomonas campestris pv. campestris in crucifer seed with slurry treatment of calcium hypochlorite. Plant Dis. 70: 1027-1030.

Stall, R.E. and Cook, A.A., 1966. Multiplication of Xanthomonas vesicatoria and lesion development in resistant and susceptible pepper. Phytopathology 56: 1152-1154.

Vakili, N.G., 1967. Importance of wounds in bacterial spot (Xanthomonas vesicatoria) of tomatoes in the field. Phytopathology 57: 1099-1103.

Valleau, W. D., Johnson, E. M. and Diachun, S., 1944. Root infection of crop plants and weeds by tobacco leaf spot bacteria. Phytopathology 34: 163-174.

Vauterin, L., Rademaker, J. and Swings, J., 2000. Synopsis on the taxonomy of the genus Xanthomonas. Phytopathology 90: 677-682.

Waggoner, P.E. and Horsfall, J.G., 1969. EPIDEM: A simulator of plant disease written for a computer. Connecticut Ag. Exp. Stn. Bulletin, 698 pp.

Waggoner, P.E. and Parlange, J.Y., 1975. Slowing of spore germination with changes between moderately warm and cool temperatures. Phytopathology 65: 551-553.

Wallis, F.M., Rijkenberg, F.H.J., Joubert, J.J. and Martin, M.M. 1973. Ultrastructural histopathology of cabbage leaves infected with Xanthomonas campestris. Physiol. Plant Pathology 3: 371-378.

Ward, H.P. and O’Garro, L.W., 1992. Bacterial spot of pepper and tomato in Barbados. Phytopathology 76: 1046-1048.

Wiles, A.B. and Walker, J.C., 1952. Epidemiology and control of angular leaf spot of cucumber. Phytopathology 42: 105-108.

Bournival B.L., Vallejos C.E., Scott J.W., 1990. Genetic analysis of resistances to races 1 and 2 of Fusarium oxysporum f. sp. lycopersici from the wild tomato Lycopersicon pennellii. Theor. Appl. Genet. 79: 641-645

Bournival B.L., Vallejos C.E., Scott J.W., 1989. An isozyme marker for resistance to race 3 of Fusarium oxysporum f. sp. lycopersici in tomato. Theor. Appl. Genet. 78: 489-494

Sarfatti M., Abu-Abied M., Katan J., Zamir D., 1991. RFLP mapping of I1 - a new locus in tomato conferring resistance against Fusarium oxysporum f. sp. lycopersici race 1. Theor. Appl. Genet. (in press)

Scott J.W., Jones J.P., 1989. Monogenic resistance in tomato to Fusarium oxysporum f. sp. lycopersici race 3. Euphytica 40: 49-53

Benhamou N., 1992. Ultrastructural detection of β-1,3-glucans in tobacco root tissues infected by Phytophthora parasitica var. nicotianae using a gold-complexed tobacco β-1,3-glucanase. Physiol. Mol. Plant Pathol. 41: 351-370

Benhamou N., 1996. Elicitor-induced plant defense pathways. Trends Plant Sci. 1: 233-240

Benhamou N., Bélanger R.R., 1998. Induction of systemic resistance to Pythium damping-off in cucumber plants by benzothiadiazole: ultrastructure and cytochemistry of the host response. Plant J. 14: 13-21

Benhamou N., Chamberland H., Ouellette G.B., Pauzé F.J., 1987. Ultrastructural localization of β-1,4-D-glucans in two pathogenic fungi and in their host tissues by means of an exoglucanase-gold complex. Can. J. Microbiol. 33: 405-417

Benhamou N., Lafontaine P.J., 1995. Ultrastructural and cytochemical characterization of elicitor-induced responses in tomato root tissues infected by Fusarium oxysporum f. sp. radicis-lycopersici. Planta 197: 89-102

Benhamou N., Lafontaine P.J., Nicole M., 1994. Seed treatment with chitosan induces systemic resistance to Fusarium crown and root rot in tomato plants. Phytopathology 84: 1432-1444

Bennett M., Gallagher M., Fagg J., Bestwick C., Paul T., Beale M., Mansfield J., 1996. The hypersensitive reaction, membrane damage and accumulation of autofluorescent phenolics in lettuce cells challenged by Bremia lactucae. Plant J. 9: 851-865

Blanchette R.A., 1991. Delignification of wood-decay fungi. Annu. Rev. Phytopathol. 29: 381-398

Brammall R.A., Higgins V.J., 1988. A histological comparison of fungal colonization in tomato seedlings susceptible and resistant to Fusarium crown and root rot disease. Can. J. Bot. 66: 915-925

Chérif M., Benhamou N., Menzies J.G., Bélanger R.R., 1992. Silicon induced resistance in cucumber plants against Pythium ultimum. Physiol. Mol. Plant Pathol. 41: 411-425

Cohen Y., Niderman T., Mösinger E., Fluhr R., 1994. β-Aminobutyric acid induces the accumulation of pathogenesis-related proteins in tomato (Lycopersicon esculentum L.) plants and resistance to late blight infection caused by Phytophthora infestans. Plant Physiol. 104: 59-66

De Cal A., Pascual S., Melgarejo P., 1997. Involvement of resistance induction by Penicillium oxalicum in the biocontrol of tomato wilt. Plant Pathol. 46: 72-79

Friedrich L., Lawton K., Ruess W., Masner P., Specker N., Gut Rella M., Meier B., Dincher S., Staub T., Uknes S., and others., 1996. A benzothiadiazole derivative induces systemic acquired resistance in tobacco. Plant J. 10: 61-70

Görlach J., Volrath S., Knauff-Beiter G., Hengy G., Beckhove U., Kogel K.H., Oostendorp M., Staub T., Ward E., Kessmann H., and others., 1996. Benzothiadiazole, a novel class of inducers of systemic acquired resistance, activates gene expression and disease resistance in wheat. Plant Cell 8: 629-643.

Jarvis W.R., 1988. Fusarium crown and root rot of tomatoes. Phytoprotection 69: 49-64

Kauffmann S., Legrand M., Geoffroy P., Fritig B., 1987. Biological function of “pathogenesis-related” proteins: four PR proteins of tobacco have 1,3-β-glucanase activity. EMBO J. 6: 3209-3212

Lamb C.J., Lawton M.A., Dron M., Dixon R.A., 1989. Signals and transduction mechanisms for activation of plant defense against microbial attack. Cell 56: 215-224 [PubMed]

Lawton K.A., Friedrich L., Hunt M., Weymann K., Delaney T., Kessmann H., Staub T., Ryals J., 1996. Benzothiadiazole induces disease resistance in Arabidopsis by activation of the systemic acquired resistance signal transduction pathway. Plant J. 10: 71-82 [PubMed][Full Text]

Lemanceau P., Alabouvette C., 1993. Suppression of Fusarium wilts by fluorescent Pseudomonads: mechanisms and applications. Biocontrol Sci. Technol. 3: 219-234

Madamanchi N.R., Kuc J., 1991. Induced systemic resistance in plants. In G.T. Cole, T.A. Hoch, eds, Fungal Spores and Disease Initiation in Plants and Animals. Plenum Publishers, New York, pp 347-362.

Malamy J., Klessig D.F., 1992. Salicylic acid and plant disease resistance. Plant J. 2: 643-654.

Mayer A.M., 1987. Polyphenol oxidases in plants: recent progress. Phytochemistry 26: 11-20

Métraux J.P., Ahl Goy P., Staub T., Speich J., Steinemann A., Ryals J., Ward E., 1991. Induced resistance in cucumber in response to 2,6-dichloroisonicotinic acid and pathogens. In Hennecke H., Verma D.P.S., eds, Advances in Molecular Genetics of Plant-Microbe Interactions, Vol 1. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 432-439

Niemann G.J., Van der Kerk A., Niessen W.M.A., Versluis K., 1991. Free and cell wall-bound phenolics and other constituents from healthy and fungus-infected carnation (Dianthus caryophyllus L.) stems. Physiol. Mol. Plant Pathol. 38: 417-432.

Ride J.P., 1986. Induced structural defense in plants. In Gould G.W., Coopre R.M., Board R.G., eds, Natural Antimicrobial Systems in Plants and Animals. University Press, Bath, UK, pp 159-165

Ross A.F., 1961. Systemic acquired resistance induced by localized virus infections in plants. Virology 14: 340-358

Ryals J., Ward E., Métraux J.P., 1992. Systemic acquired resistance: an inducible defense mechanism in plants. In Wray J.L., ed, Inducible Plant Proteins: Their Biochemistry and Molecular Biology. Cambridge University Press, Cambridge, UK, pp 205-229

Scalet M., Crivaletto E., Mallardi F., 1989. Demonstration of phenolic compounds in plant tissues by an osmium-iodide post-fixation procedure. Stain Technol 64: 273-290 [PubMed]

Southerton S.G., Deverall B.J., 1990. Changes in phenolic acid levels in wheat leaves expressing resistance to Puccinia recondita f. sp. tritici. Physiol. Mol. Plant Pathol. 37: 437-450

Ward E.R., Uknes S.J., Williams S.C., Dincher S.S., Wiederhold D.L., Alexander D.C., Ahl-Goy P., Metraux J.P., Ryals J.A., 1991. Coordinate gene activity in response to agents that induce systemic acquired resistance. Plant Cell 3: 1085-1094. [Free Full text in PMC]

Laterrot, R. and J. Philouze., 1984. Recombination between resistance to pathotype I (I-2 allele) and susceptibility to pathotype 0 (I^+ allele) of Fusarium Oxysporum f. sp. lycopersici in tomato (Lycopersicon esculentum Mill.). Eucarpia, Tomato Working Group. Synopses IXth Meeting, May 22-24, 1984, Wageningen, The Netherlands, 70-74.

Bachi, P.R., J.W. Beale, J.R. Hartman, D.E. Hershman, W.C. Nesmith, and P.C. Vincelli, 2002. Plant Diseases in Kentucky. Plant Disease Diagnostic Laboratory Summary, 2001. UK Department of Plant Pathology. In press.

Abad L., D'Urzo M.P., Liu D., Narasimhan M.L., Reuveni M., Zhu J.K., Niu X., Singh N.K., Hasegawa P.M., Bressan R.A., 1996. Antifungal activity of tobacco osmotin has specificity and involves plasma membrane permeabilization. Plant Sci. 118: 11-23

Alexander D., Goodman R.M., Gut-Rella M., Glascock C., Weymann K., Friedrich L., Maddox D., Ahl-Goy P., Luntz T., Ward E., et al., 1993. Increased tolerance to two oomycete pathogens in transgenic tobacco expressing pathogenesis-related protein 1a. Proc. Nat. Acad. Sci. USA 90: 7327-7331 [ Free Full text in PMC]

Beckman C.H., Roberts E.M., 1995. On the nature and genetic basis for resistance and tolerance to fungal wilt diseases of plants. Adv. Bot. Res. 21: 35-77

Benhamou N., Grenier J., Asselin A., 1991. Immunogold localization of pathogenesis-related protein P14 in tomato root cells infected with Fusarium oxysporum f. sp. radicis-lycopersici. Physiol. Mol. Plant Pathol. 38: 237-253

Benhamou N., Grenier J., Asselin A., Legrand M., 1989. Immunogold localization of beta-1,3-glucanases in two plants infected by vascular wilt fungi. Plant Cell 1: 1209-1221 [ Free Full text in PMC]

Ceccardi T.L., Barthe G.A., Derrick K.S., 1998. A novel protein associated with citrus blight has sequence similarities to expansin. Plant Mol. Biol. 38: 775-783 [PubMed]

Christ U., Mösinger E., 1989. Pathogenesis-related proteins of tomato: I. Induction by Phytophthora infestans and other biotic and abiotic inducers and correlations with resistance. Physiol. Mol. Plant Pathol. 35: 53-65

Cornelissen B.J., Hooft van Huijsduijnen R.A., Bol J.F., 1986. A tobacco mosaic virus-induced tobacco protein is homologous to the sweet-tasting protein thaumatin. Nature 321: 531-532 [PubMed]

De Boer A.H., Volkov V., 2003. Logistics of water and salt transport through the plant: structure and functioning of the xylem. Plant Cell Environ (in press)

De Wit P.J., Buurlage M.B., Hammond K.E., 1986. The occurrence of host-, pathogen-, and interaction-specific proteins in the apoplast of Cladosporium fulvum (syn. Fulvia fulva) infected tomato leaves. Physiol Mol. Plant Pathol. 29: 159-172

De Wit P.J., van der Meer F.E., 1986. Accumulation of the pathogenesis-related tomato leaf protein p14 as an early indicator of incompatibility in the interaction between Cladosporium fulvum (Syn. Fulvia fulva) and tomato. Physiol. Mol. Plant Pathol. 28: 203-214

Domingo C., Conejero V., Vera P., 1994. Genes encoding acidic and basic class III beta-1,3-glucanases are expressed in tomato plants upon viroid infection. Plant Mol. Biol. 24: 725-732 [PubMed]

Emslie K.R., Molloy M.P., Barardi C.R.M., Jardine D., Wilkins M.R., Bellamy A.R., Williams K.L., 2000. Serotype classification and characterization of the rotavirus SA11 VP6 protein using mass spectrometry and two-dimensional gel electrophoresis. Funct. Integr. Genomics 1: 12-24 [PubMed][Full Text]

Gao H., Beckman C.H., Mueller W.C., 1995. The nature of tolerance to Fusarium oxysporum f. sp. lycopersici in polygenically field-resistant marglobe tomato plants. Physiol. Mol. Plant Pathol. 46: 401-412

Hu X., Reddy A.S., 1997. Cloning and expression of a PR5-like protein from Arabidopsis: inhibition of fungal growth by bacterially expressed protein. Plant Mol. Biol. 34: 949-959 [PubMed]

Hubbes M., 1999. The American elm and Dutch elm disease. For Chron 75: 265-273

Jeun Y.C., 2000. Immunolocalization of PR-protein P14 in leaves of tomato. J. Plant Dis. Prot. 107: 352-367

Jia Y., Martin G.B., 1999. Rapid transcript accumulation of pathogenesis-related genes during an incompatible interaction in bacterial speck disease resistant tomato plants. Plant Mol. Biol. 40: 455-465 [PubMed]

Joosten M.H., Bergmans C.J.B., Meulenhoff E.J.S., Cornelissen B.J.C., De Wit P.J., 1990. Purification and serological characterization of three basic 15-kilodalton pathogenesis-related proteins from tomato. Plant Physiol. 94: 585-591

Joosten M.H., De Wit P.J., 1989. Identification of several pathogenesis-related proteins in tomato leaves inoculated with Cladosporium fulvum (syn. Fulvia Fulva) as 1,3-β-glucanases and chitinases. Plant Physiol. 89: 945-951

King G.J., Turner V.A., Hussey C.E., Jr, Syrkin Wurtele E., Lee M., 1988. Isolation and characterization of a tomato cDNA clone which codes for a salt-induced protein. Plant Mol. Biol. 10: 401-412

Kitajima S., Sato F., 1999. Plant pathogenesis-related proteins: molecular mechanisms of gene expression an protein function. J. Biochem. 125: 18 [PubMed]

Kroon B.A.M., Elgersma D.M., 1993. Interactions between race 2 of Fusarium oxysporum f. sp. lycopersici and near-isogenic resistant and susceptible lines of intact plants or callus of tomato. J. Phytopathol. 137: 19

Kuhn A.J., Schröder W.H., Bauch J., 2000. The kinetics of calcium and magnesium entry into mycorrhizal spruce roots. Planta 210: 488-496 [PubMed][Full Text]

Liang J., Zhang J., 1997. Collection of xylem sap at flow rate similar to in vivo transpiration flux. Plant Cell Physiol. 38: 1375-1381

Lucas J., Henriquez A.C., Lottspiech F., Henschen A., Sänger H.L., 1985. Amino acid sequence of the “pathogenesis-related” leaf protein p14 from viroid-infected tomato reveals a new type of structurally unfamiliar proteins. EMBO J 4: 2745-2749

Masuda S., Kamada H., Satoh S., 2001. Chitinase in cucumber xylem sap. Biosci. Biotechnol. Biochem 65: 1883-1885 [PubMed][Free Full Text]

Mauch F., Mauch-Mani B., Boller T., 1988. Antifungal hydrolases in pea tissue: II. Inhibition of fungal growth by combinations of chitinase and β-1,3-glucanase. Plant Physiol. 88: 936-942

Meinwald Y.C., Stimson E.R., Scheraga H.A., 1986. Deamidation of the asparaginyl-glycyl sequence. Int. J. Pept. Protein Res. 28: 79-84 [PubMed]

Melchers L.S., Sela-Buurlage M.B., Vloemans S.A., Woloshuk C.P., Van Roekel J.S., Pen J., van den Elzen P.J., Cornelissen B.J., 1993. Extracellular targeting of the vacuolar tobacco proteins AP24, chitinase and beta-1,3-glucanase in transgenic plants. Plant Mol. Biol. 21: 583-593 [PubMed]

Mes J.J., van Doorn A.A., Wijbrandi J., Simons G., Cornelissen B.J.C, Haring M.A., 2000. Expression of the Fusarium resistance gene I-2 colocalizes with the site of fungal containment. Plant J. 23: 183-194 [PubMed][Full Text]

Mes J.J., Weststeijn E.A., Herlaar F., Lambalk J.J.M., Wijbrandi J., Haring M.A., Cornelissen B.J.C., 1999. Biological and molecular characterization of Fusarium oxysporum f. sp. lycopersici divides race 1 isolates into separate virulence groups. Phytopathology 89: 156-160

Nemec S., 1995. Stress-related compounds in xylem fluid of blight-diseased citrus containing Fusarium solani naphtazarin toxins and their effects on the host. Can. J. Microbiol. 41: 515-524

Netzer D., Kritzman G., 1979. Beta-(1,3) Glucanase activity and quantity of fungus in relation to Fusarium wilt in resistant and susceptible near-isogenic lines of muskmelon. Physiol. Plant Pathol. 14: 47-55

Niderman T., Genetet I., Bruyere T., Gees R., Stintzi A., Legrand M., Fritig B., Mosinger E., 1995. Pathogenesis-related PR-1 proteins are antifungal: isolation and characterization of three 14-kilodalton proteins of tomato and of a basic PR-1 of tobacco with inhibitory activity against Phytophthora infestans. Plant Physiol. 108: 17-27 [ Free Full text in PMC]

Payne G. W. M., Williams S., Desai N., Parks T.D., Dincher S., Carnes M., Ryals J., 1988. Isolation and nucleotide sequence of a novel cDNA clone encoding the major form of pathogenesis-related protein R.  Plant Mol. Biol. 11: 223-224

Pegg G.F., Young D.H., 1981. Changes in glycosidase activity and their relationship to fungal colonization during infection of tomato by Verticillium albo-atrum. Physiol. Mol. Plant Pathol. 19: 371-382

Pegg G.F., Young D.H., 1982. Purification and characterization of chitinase enzymes from healthy and Verticillium albo-atrum-infected tomato plants, and from V. albo-atrum. Physiol. Mol. Plant Pathol. 21: 389-409

Pierpoint W.S., Tatham A.S., 1987. Identification of the virus-induced protein of tobacco leaves that resembles the sweet-protein thaumatin. Physiol. Mol. Plant Pathol. 31: 291-298

Quackenbush J., Cho J., Lee D., Liang F., Holt I., Karamycheva S., Parvizi B., Pertea G., Sultana R., White J., 2001. The TIGR gene indices: analysis of gene transcript sequences in highly sampled eukaryotic species. Nucleic Acids Res. 29: 159-164. [PubMed][Free Full Text]

 

Benson, D.A., I. Karsch-Mizrachi, D.J. Lipman, J. Ostell, B.A. Rapp and D.L. Wheeler, 2000. GenBank. Nucleic Acids Research, 28: 15-18.

Rodrigo I., Vera P., Frank R., Conejero V., 1991. Identification of the viroid-induced tomato pathogenesis-related (PR) protein P23 as the thaumatin-like tomato protein NP24 associated with osmotic stress. Plant Mol. Biol. 16: 931-934. [PubMed]

Rodrigo I., Vera P., Tornero P., Hernandez-Yago J., Conejero V., 1993. cDNA cloning of viroid-induced tomato pathogenesis-related protein P23: characterization as a vacuolar antifungal factor. Plant Physiol. 102: 939-945 [Free Full text in PMC]

Ruiz-Medrano R., Jimenez-Moraila B., Herrera-Estrella L., Rivera-Bustamante R.F., 1992. Nucleotide sequence of an osmotin-like cDNA induced in tomato during viroid infection. Plant Mol. Bio. 20: 1199-1202 [PubMed]

Satoh S., Lizuka C., Kikuchi A., Nakamura N., Fujii T., 1992. Proteins and carbohydrates in xylem sap from squash root. Plant Cell Physiol. 33: 841-847

Sattelmacher B., 2001. The apoplast and its significance for plant mineral nutrition. New Phytol. 149: 167-192

Schagger H., von Jagow G., 1987. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal. Biochem. 166: 368-379 [PubMed]

Sela-Buurlage M.B., Ponstein A.S., Bres-Vloemans S.A., Melchers L.S., van den Elzen P.J.M., Cornelissen B.J.C., 1993. Only specific tobacco (Nicotiana tabacum) chitinases and β-1,3-glucanases exhibit antifungal activity. Plant Physiol. 101: 857-863 [ Free Full text in PMC]

Shevchenko A., Wilm M., Vorm O., Mann M., 1996. Mass spectrometric sequencing of proteins from silver stained polyacrylamide gels. Anal. Chem. 68: 850-858 [PubMed]

Simmons C.R., 1994. The physiology and molecular biology of plant 1,3-beta-D-glucanases and 1,3;1,4-beta-D-glucanases. Crit. Rev. Plant Sci. 13: 325-387

Simons G., Groenendijk J., Wijbrandi J., Reijans M., Groenen J., Diergaarde P., van der Lee T., Bleeker M., Onstenk J., de Both M., et al., 1998. Dissection of the Fusarium I2 gene cluster in tomato reveals six homologs and one active gene copy. Plant Cell 10: 1055-1068 [ Free Full text in PMC]

Stintzi A., Heitz T., Prasad V., Wiedemann-Merdinoglu S., Kauffmann S., Geoffroy P., Legrand M., Fritig B., 1993. Plant “pathogenesis-related” proteins and their role in defense against pathogens. Biochimie 75: 687-706 [PubMed]

Uknes S., Mauch-Mani B., Moyer M., Potter S., Williams S., Dincher S., Chandler D., Slusarenko A., Ward E., Ryals J., 1992. Acquired resistance in Arabidopsis. Plant Cell 4: 645-656 [ Free Full text in PMC]

Van Kan J.A., Joosten M.H., Wagemakers C.A., Van den Berg-Velthuis G.C., De Wit P.J., 1992. Differential accumulation of mRNAs encoding extracellular and intracellular PR proteins in tomato induced by virulent and avirulent races of Cladosporium fulvum. Plant Mol. Biol. 20: 513-527 [PubMed]

Van Loon L.C., Van Strien E.A., 1999. The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiol. Mol. Plant Pathol. 55: 85-97.

Van Pelt-Heerschap H., Smit-Bakker O., 1999. Analysis of defense-related proteins in stem tissue of carnation inoculated with a virulent and avirulent race of Fusarium oxysporum f.sp. dianthi. Eur. J. Plant Pathol. 105: 681-691.

Woloshuk C.P., Meulenhoff J.S., Sela-Buurlage M., van den Elzen P.J., Cornelissen B.J., 1991. Pathogen-induced proteins with inhibitory activity toward Phytophthora infestans. Plant Cell 3: 619-628 [ Free Full text in PMC]

Young D.H., Pegg G.F., 1981. Purification and characterization of 1,3-beta-glucan hydrolases from healthy and Verticillium albo-atrum-infected tomato plants. Physiol. Plant Pathol. 19: 391-417

Young S.A., Guo A., Guikema J.A., White F.F., Leach J.E., 1995. Rice cationic peroxidase accumulates in xylem vessels during incompatible interactions with Xanthomonas oryzae pv. oryzae. Plant Physiol. 107: 1333-1341 [ Free Full text in PMC]

Pilowsky, M., S. Cohen, R. Ben-Joseph, A. Shlomo, L. Chen, S. Nahon and J. Krikun, 1989. TY-20. A tomato cultivar tolerant to tomato yellow leaf curl virus (TYLCV). Hassadeh 69:1212-1215.
 

Alamillo J.M., García-Olmedo F., 2001. Effects of urate, a natural inhibitor of peroxynitrite-mediated toxicity, in the response of Arabidopsis thaliana to the bacterial pathogen Pseudomonas syringae. Plant J. 25: 529-541. [PubMed][Full Text]

Boccara M., Vedel R., Lalo D., Lebrun M.H., Lafay J.F., 1991. Genetic diversity and host range in strains of Erwinia chrysanthemi. Mol. Plant-Microbe Interact 4: 293-299

Broekaert W.F., Cammue B.P.A., De Bolle M.F.C, Thevissen K., De Samblanx G.W., Osborn R.W., 1997. Antimicrobial peptides from plants. Crit. Rev. Plant Sci. 16: 297-323.

Caaveiro J.M.M., Molina A., González-Mañas J.M., Rodríguez-Palenzuela P., García-Olmedo F., Goñi F.M., 1997. Differential effect of five types of antipathogenic plant peptides on model membranes. FEBS Lett 410: 338-342. [PubMed]

O'Donnell P.J., Calvert C., Atzorn R., Wasternack C., Leyser H.M.O., Bowles D.J., 1996. Ethylene as a signal mediating the wound response of tomato plants. Science 274: 1914-1917. [PubMed][Full Text]

Osbourn A.E., 1996. Preformed antimicrobial compounds and plant defense against fungal attack. Plant Cell 8: 1821-1831. [ Free Full text in PMC]

Osbourn A.E., 1999. Antimicrobial phytoprotectants and fungal pathogens: a commentary. Fungal Genet Biol 26: 163-168. [PubMed][Full Text]

Park C.J., Park C.B., Hong S.S., Lee H.S., Lee S.Y., Kim C., 2000. Characterization and cDNA cloning of two glycine- and histidine-rich antimicrobial peptides from the roots of shepherd's purse, Capsella bursa-pastoris. Plant Mol Biol 44: 187-197 [PubMed]

Peña-Cortés H., Fisahn J., Willmitzer L., 1995. Signals involved in the wound-induced proteinase inhibitor II gene expression in tomato and potato plants. Proc. Natl. Acad. Sci. USA 92: 4106-4113 [ Free Full text in PMC]

Carmona M.J., Molina A., Fernández J.A., López-Fando J.J., García-Olmedo F., 1993. Expression of the α-thionin gene from barley in tobacco confers enhanced resistance to bacterial pathogens. Plant J. 3: 457-462. [PubMed][Full Text]

Church G.M., Gilbert W., 1984. Genomic sequencing. Proc. Natl. Acad. Sci. USA 81: 1991-1995. [PubMed]

Dammann C., Rojo E., Sanchez-Serrano J.J., 1997. Abscisic acid and jasmonic acid activate wound-inducible genes in potato through separate, organ-specific signal transduction pathways. Plant J. 11: 773-782. [PubMed][Full Text]

Dellaporta S.L., Wood J., Hicks J.B., 1983. A plant DNA minipreparation: version II. Plant Mol. Biol. Rep. 1: 19-22

De Samblanx G.W., Goderis I.J., Thevissen K., Raemaekers R., Fant F., Borremans F., Acland D.P., Osborn R.W., Patel S., Broekaert W.F., 1997. Mutational analysis of a plant defensin from radish (Raphanus sativus L.) reveals two adjacent sites important for antifungal activity. J. Biol. Chem. 272: 1171-1179. [PubMed][Free Full Text]

Epple P., Apel K., Bohlmann H., 1997. Overexpression of an endogenous thionin gives enhanced resistance of Arabidopsis thaliana against Fusarium oxysporium. Plant Cell 9: 509-520. [ Free Full text in PMC]

García-Olmedo F., Carmona M.J., Lopez-Fando J.J., Fernandez J.A., Castagnaro A., Molina A., Hernandez-Lucas C., Carbonero P., 1992. Characterization and analysis of thionin genes. In Boller T., Meins F., eds, Genes Involved in Plant Defense. Springer-Verlag, Wien, Austria, pp 283-302.

García-Olmedo F., Molina A., Alamillo J.M., Rodríguez-Palenzuela P., 1998. Plant defense peptides. Biopolymers 47: 479-491. [PubMed][Full Text]

García-Olmedo F., Molina A., Segura A., Moreno M., 1995. The defensive role of nonspecific lipid-transfer proteins in plants. Trends Microbiol. 3: 72-74. [PubMed][Full Text]

García-Olmedo F., Rodriguez-Palenzuela P., Molina A., Alamillo J.M., Lopez-Solanilla E., Berrocal-Lobo M., Poza-Carrion C., 2001. Antibiotic activities of peptides, hydrogen peroxide and peroxynitrite in plant defense. FEBS Lett 498: 219-222. [PubMed][Full Text]

Holtorf S., Ludwig-Muller J., Apel K., Bohlmann H., 1998. High-level expression of a viscotoxin in Arabidopsis thaliana gives enhanced resistance against Plasmodiophora brassicae. Plant Mol. Biol. 36: 673-680. [PubMed]

Kombrink E., Somssich I.E., 1997. Pathogenesis related proteins in plant defense. In Carrol G., Tudzynski P., eds, The Mycota V Part A, Plant Relationships. Spring-Verlag, Berlin, pp 107-128

León J., Rojo E., Sanchez-Serrano J.J., 2001. Wound signaling in plants. J. Exp. Bot. 52: 19 [PubMed]

López-Solanilla E., Garcia-Olmedo F., Rodriguez-Palenzuela P., 1998. Inactivation of the sapA to sapF locus of Erwinia chrysanthemi reveals common features in plant and animal bacterial pathogens. Plant Cell 10: 917-924. [ Free Full text in PMC]

López-Solanilla E., Llama-Palacio A., García-Olmedo F., Rodríguez-Palenzuela P., 2001. Relative effects on virulence of mutations in the sap, pel, and hrp loci of Erwinia chrysanthemi. Mol Plant-Microbe Interact. 14: 386-393. [PubMed]

Miguel E, Poza-Carrión C., López-Solanilla E., Aguilar I., Llama-Palacios A., García-Olmedo F., Rodríguez-Palenzuela P., 2000. Evidence against a direct antimicrobial role of H2O2 in the infection of plants by Erwinia chrysanthemi. Mol Plant-Microbe Interact. 13: 421-429. [PubMed]

Molina A, Diaz I., Vasil IK., Carbonero P., Garcia-Olmedo F., 1996. Two cold-inducible genes encoding lipid transfer protein LTP4 from barley show differential responses to bacterial pathogens. Mol. Gen Genet. 252: 162-168. [PubMed]

Molina A, García-Olmedo F., 1997. Enhanced tolerance to bacterial pathogens caused by transgenic expression of barley lipid transfer protein LTP2. Plant J. 12: 669-675. [PubMed]

Moreno M., Segura A., García-Olmedo F., 1994. Pseudothionin-PTH1, a potato peptide active against potato pathogens. Eur. J. Biochem. 223: 135-139. [PubMed]

O'Donnell J.P., Truesdale M.R., Calvert C., Dorans A., Roberts M.R., Bowles D.J., 1998. A novel tomato gene that rapidly responds to wound- and pathogen-related signals. Plant J. 14: 137-142

Segura A., Moreno M., Madueno F., Molina A., Garcia-Olmedo F., 1999. Snakin-1, a peptide from potato that is active against plant pathogens. Mol. Plant-Microbe Interact. 12: 16-23 [PubMed]

Solano R., Ecker J.R., 1998. Ethylene gas: perception, signaling and response. Curr. Opin. Plant Biol. 1: 393-398 [PubMed]

Tam J.P., Yi-An L., Jin-Long Y., Koiu-Wei C., 1999. An unusual structural motif of antimicrobial peptides containing end-to-end macrocycle and cystine-knot disulfides. Proc. Natl Acad. Sci. USA 96: 8913-8918. [ Free Full text in PMC]

Terras F.R.G., Eggermont K., Kovaleva V., Raikhel N.V., Osborn R.W., Kester A., Rees S.B., Vanderleyden J., Cammue B.P.A., Broekaert W.F., 1995. Small cysteine-rich antifungal proteins from radish: their role in host defense. Plant Cell 7: 573-588. [ Free Full text in PMC]

Thomma B.P.H.J., Eggermont K., Pennicckx I.A.M.A., Mauch-Mani B., Vogelsang R., Cammue B.P.A, Broekaert W.F., 1998. Separate jasmonate-dependent and salicylate-dependent defense-response pathways in Arabidopsis are essential for resistance to distinct microbial pathogens. Proc. Natl. Acad. Sci. USA 95: 15107-15111 [ Free Full text in PMC]

Thomma B.P.H.J., Eggermont K., Tierens K.F.M.J., Broekaert W.F., 1999. Requirement of functional ethylene-insensitive 2 gene for efficient resistance of Arabidopsis to infection by Botrytis cinerea. Plant Physiol. 121: 1093-1101. [Free Full text in PMC]

Titarenko E., Lopez-Solanilla E., García-Olmedo F., Rodriguez-Palenzuela P., 1997. Mutants of Ralstonia (Pseudomonas) solanacearum sensitive to antimicrobial peptides are altered in their lipopolysaccharide structure and are avirulent in tobacco. J. Bacteriol. 179: 6699-6704. [ Free Full text in PMC]

Wada M., Kato H., Malik K., Sriprasertsak P., Ichinose Y., Shiraishi T., Yamada T., 1995. A supprescin from a phytopathogenic fungus deactivates transcription of a plant defense gene encoding phenylalanine ammonia-lyase. J. Mol. Biol. 249: 513-519. [PubMed][Full Text]

Walker-Simmons M., Ryan C.A., 1984. Proteinase inhibitor synthesis in tomato leaves. Plant Physiol. 76: 787-790.
 

Díaz J., ten Have A., van Kan J.A., 2002. The Role of Ethylene and Wound Signaling in Resistance of Tomato to Botrytis cinerea. Plant Physiol. 129(3): 1341-1351.

Hayashi K., Schoonbeek H.J., De Waard M.A., 2002. Bcmfs1, a Novel Major Facilitator Superfamily Transporter from Botrytis cinerea, Provides Tolerance towards the Natural Toxic Compounds Camptothecin and Cercosporin and towards Fungicides. Appl. Environ. Microbiol. 68(10): 4996-5004.

Doss R.P., 1999. Composition and Enzymatic Activity of the Extracellular Matrix Secreted by Germlings of Botrytis cinerea. Appl. Environ. Microbiol. 65(2): 404-408.

Audenaert K., De Meyer G.B., Höfte M.M., 2002. Abscisic Acid Determines Basal Susceptibility of Tomato to Botrytis cinerea and Suppresses Salicylic Acid-Dependent Signaling Mechanisms. Plant Physiol. 128(2): 491-501.

Cristescu S.M., De Martinis D., te Lintel Hekkert S., Parker D.H., Harren F.J., 2002. Ethylene Production by Botrytis cinerea In Vitro and in Tomatoes. Appl. Environ. Microbiol. 68(11): 5342-5350.

Wubben J.P., Mulder W., ten Have A., van Kan J.A,. Visser J., 1999. Cloning and Partial Characterization of Endopolygalacturonase Genes from Botrytis cinerea. Appl. Environ. Microbiol. 65(4): 1596-1602.

Zimmerli L., Métraux J.P., Mauch-Mani B., 2001. ß-Aminobutyric Acid-Induced Protection of Arabidopsis against the Necrotrophic Fungus Botrytis cinerea. Plant Physiol. 126(2): 517-523.

Thomma B.P, Eggermont K., Tierens K.F., Broekaert W.F., 1999. Requirement of Functional Ethylene-Insensitive 2 Gene for Efficient Resistance of Arabidopsis to Infection by Botrytis cinerea. Plant Physiol. 121(4): 1093-1101.

Kennedy R., Wakeham A.J., Byrne K.G., Meyer U.M., Dewey F.M.. 2000. A New Method To Monitor Airborne Inoculum of the Fungal Plant Pathogens Mycosphaerella brassicicola and Botrytis cinerea. Appl. Environ. Microbiol. 66(7): 2996-3003.

Doss R.P., Potter S.W., Soeldner A.H., Christian J.K., Fukunaga L.E., 1995. Adhesion of germlings of Botrytis cinerea.  Appl. Environ. Microbiol. 61(1): 260-265.

Slawecki R.A., Ryan E.P., Young D.H., 2002. Novel Fungitoxicity Assays for Inhibition of Germination-Associated Adhesion of Botrytis cinerea and Puccinia recondita Spores. Appl. Environ. Microbiol. 68(2): 597-601.

Diolez A., Marches F., Fortini D., Brygoo Y., 1995. Boty, a long-terminal-repeat retroelement in the phytopathogenic fungus Botrytis cinerea. Appl. Environ. Microbiol. 61(1): 103-108.

Hermosa M.R., Grondona I., Iturriaga E.A., Diaz-Minguez J.M., Castro C., Monte E., Garcia-Acha I., 2000. Molecular Characterization and Identification of Biocontrol Isolates of Trichoderma spp. Appl. Environ. Microbiol. 66(5): 1890-1898.

López-García B., Pérez-Payá E., Marcos J.F., 2002. Identification of Novel Hexapeptides Bioactive against Phytopathogenic Fungi through Screening of a Synthetic Peptide Combinatorial Library. Appl. Environ. Microbiol. 68(5): 2453-2460.

Lorito M., Woo S.L., Fernandez I.G., Colucci G., Harman G.E., Pintor-Toro J.A., Filippone E., Muccifora S., Lawrence C.B., Zoina A., Tuzun S., Scala F., 1998. Genes from mycoparasitic fungi as a source for improving plant resistance to fungal pathogens. Proc. Natl. Acad. Sci. U S A. 95(14): 7860-7865.

Does M.P., Houterman P.M., Dekker H.L., Cornelissen B.J., 1999. Processing, Targeting, and Antifungal Activity of Stinging Nettle Agglutinin in Transgenic Tobacco. Plant Physiol. 120(2): 421-432.

Mach R.L., Peterbauer C.K., Payer K., Jaksits S., Woo S.L., Zeilinger S., Kullnig C.M., Lorito M., Kubicek C.P., 1999. Expression of Two Major Chitinase Genes of Trichoderma atroviride (T. harzianum P1) Is Triggered by Different Regulatory Signals. Appl. Environ. Microbiol. 65(5): 1858-1863.

Barbeau, G., Carré, J.P., Jourjon, F. & Maite, C., 1996. Cinétique de développement de Botrytis cinerea, agent de la pourriture noble dans différents terroirs des Coteaux du Layon. In: Proc 1er Colloque International "Les terroirs Viticoles", Angers, 17 - 18 July 1996, pp 388 - 393.

Bekesi, P., 1979. The effect of the pollen of some weed species on germination of conidia of Botrytis cinerea. Acta Phytopathol. Acad. Scientiarum Hungaricae 14: 379-382.

Bekesi, P., 1982. New inoculation method for infecting sunflowers by Botrytis cinerea Pers. Acta Phytopathol. Acad. Scientiarum Hungaricae 17: 221-224.

Chou, M.C. and T.F. Preece, 1968. The effect of pollen grains on infections caused by Botrytis cinerea Fr. Ann. Appl. Biol. 62: 11-22.

Dillard, H.R. and J.E. Hunter, 1986. Association of common ragweed with Sclerotinia rot of cabbage in New York State. Plant Dis. 70: 26-28.

Fokkema, N.J., 1971. The effect of pollen in the phyllosphere of rye on colonization by saprophytic fungi and on infection by Helminthosporium sativum and other leaf pathogens. Netherl. J. Plant Pathol. 77 Supplement No. 1, 60 pp.

Gossen, B.D., L.M. Harrison, J. Holley and S.R. Smith, 1996. Survey of blossom blight of alfalfa on the Canadian Prairies in 1995. Can. Plant Dis. Surv. 76: 123-125.

Gossen, B.D., Z. Lan, L.M. Harrison, J. Holley and S.R. Smith, 1997. Survey of blossom blight of alfalfa on the Canadian Prairies in 1996. Can. Plant Dis. Surv. 77: 88-89.

Hartill, W.F.T., 1975. Germination of Botrytis and Sclerotinia spores in the presence of pollen on tobacco leaves. N.Z. J. Agric. Res. 18: 405-407.

Huang, H.C. and E.G. Kokko, 1985. Infection of alfalfa pollen by Verticillium albo-atrum. Phytopathology 75: 859-865.

Jarvis, W.R. and H. Borecka, 1968. The susceptibility of strawberry flowers to infection by Botrytis cinerea. Hortic. Res. 8: 147-154.

Huang, H.C., E.G. Kokko, and R.S. Erickson, 1997. Infection of alfalfa pollen by Sclerotinia sclerotiorum. Phytoparasitica 25: 17-24.

Ogawa, J.M. and H. English, 1960. Blossom blight and green fruit rot of almond, apricot and plum caused by Botrytis cinerea. Plant Dis. Reptr. 44: 265-268.
 

Stelfox, D., J.R. Williams, U. Soehngen, and R.C. Topping, 1978. Transport of Sclerotinia sclerotiorum ascospores by rapeseed pollen in Alberta. Plant Dis. Rep. 62: 576-579.

Yamakawa, T., 1984. The effect of pollen on the infection of fruit vegetables with conidia of Botrytis cinerea. Proc. Kansas Plant Prot. Soc. 26: 1-8.

Barnett, H.L. and V.G. Lilly, 1962. A destructive mycoparasite, Gliocladium roseum. Mycologia 54: 72-77.

Bélanger, R.R., N. Dufour, J. Caron, and N. Benhamou, 1995. Chronological events associated with the antagonistic properties of Trichoderma harzianum against Botrytis cinerea: indirect evidence for sequential role of antibiosis and parasitism. Bio. Sci. Tech. 5: 41-53.

Elad, Y., I. Chet, P. Boyle, and Y. Henis, 1983. Parasitism of Trichoderma spp. on Rhizoctonia solani and Sclerotium rolfsii-scanning electron microscopy and fluorescence microscopy. Phytopathology 73: 85-88.

Gossen, B.D. and G. Platford, 1999. Blossom blight in alfalfa seed fields in Saskatchewan and Manitoba 1998. Can. Plant Dis. Surv. 79: 94-95.

Gossen, B.D., L.M. Harrison, J. Holley, and S.R. Smith. 1996. Survey of blossom blight of alfalfa on the Canadian Prairies in 1995. Can. Plant Dis. Surv. 76: 123-125.

Huang, H.C., S.N. Acharya, and R.S. Erickson, 2000. Etiology of alfalfa blossom blight caused by Sclerotinia sclerotiorum and Botrytis cinerea. Plant Pathol. Bull. (Taiwan) 9: 11-16.

Huang, H.C., E.G. Kokko, and R.S. Erickson, 1999. Infection of alfalfa pollen by Botrytis cinerea. Bot. Bull. Acad. Sin. 40: 101-106.

Huang, H.C., E.G. Kokko, and J.W. Huang, 1998. Epidemiological significance of pollen in fungal diseases. Recent Res. Dev. Plant Pathol. 2: 91-109.

Huang, H.C. and E.G. Kokko, 1988. Penetration of hyphae of Sclerotinia sclerotiorum by Coniothyrium minitans without the formation of appressoria. J. Phytopathol. 123: 133-139.

Huang, H.C. 1978. Gliocladium catenulatum: hypopaprasite of Sclerotinia sclerotiorum and Fusarium species. Can. J. Bot. 56: 2243-2246.

Köhl, J., M. Gerlagh., B.H. De Haas, and M.C. Krijger, 1998. Biological control of Botrytis cinerea in cyclamen with Ulocladium atrum and Gliocladium roseum under commercial growing conditions. Phytopathology 88: 568-575.

McClellan, W.D. and W.B. Hewitt, 1973. Early Botrytis rot of grapes: Time of infection and latency of Botrytis cinerea Pers. in Vitis vinifera. Phytopathology 63: 1151-1157.

Pachenari, A. and N.J. Dix, 1980. Production of toxins and wall degrading enzymes by Gliocladium roseum. Trans. Br. Mycol. Soc. 74: 561-566.

Pugh, G.J.F. and J.H. Van Eden, 1969. Cellulose-decomposing fungi in polder soils and their possible influence on pathogenic fungi. Neth. J. Plant Pathol. 75: 287-295.

Richard, J.L., C. Grosclaude, and N. Ale-Agha, 1974. Antangonism between Eutypa armeniacae and Gliocladium roseum. Plant Dis. Reptr. 58: 983-984.

Schroers, H. J., G.J. Samuels, K.A. Seifert, and W. Gams, 1999. Classification of the mycoparasite Gliocladium roseum in Clonostachys as G. rosea, its relationship to Bionectria ochroleuca, and notes on other Gliocladium-like fungi. Mycologia 91: 365-385.

Spurr, A.R. 1969. A low-viscosity epoxy embedding medium for electron microscopy. J. Ultrastruct. Res. 26: 31-43.

Sutton, J.C., D.W. Li, G. Peng, H. Yu, P.G. Zhang, and R.M. Valdebenito-Sanhueza, 1997. Gliocladium roseum: a versatile adversary of Botrytis cinerea in crops. Plant Dis. 81: 316-328.

Walker, J.A. and R.B. Maude, 1975. Natural occurrence and growth of Gliocladium roseum on the mycelium and sclerotia of Botrytis allii. Trans. Br. Mycol. Soc. 65: 335-338.

Yu, H. and J.C. Sutton, 1997. Morphological development and interactions of Gliocladium roseum and Botrytis cinerea in raspberry. Can. J. Plant Pathol. 19: 237-246.

Birkenmeier G.F., Ryan C.A., 1998. Wound signaling in tomato plants, evidence that ABA is not a primary signal for defense gene activation. Plant Physiol 117: 687-693 [ Free Full text in PMC]

Bothe H., Klingner A., Kaldorf M., Schmitz O., Esch H., Hundeshagen B., Kernebeck H., 1994. Biochemical approaches to the study of plant-fungal interactions in arbuscular mycorrhiza. Experientia 50: 919-925

Brading P.A., Hammond-Kosack K.E., Parr A., Jones J.D.G., 2000. Salicylic acid is not required for Cf-2 and Cf-9-dependent resistance of tomato to Cladosporium fulvum. Plant J. 23: 305-318 [PubMed][Full Text]

Crocoll C., Kettner J., Dörffling K., 1991. Abscisic acid in saprophytic and parasitic species of fungi. Phytochemistry 30: 1059-1060.

De Meyer G., Audenaert K., Höfte M., 1999. P. aeruginosa 7NSK2-induced systemic resistance in tobacco depends on in planta salicylic acid accumulation but is not associated with PR1a gene-expression. Eur. J. Plant Pathol. 105: 513-517.

De Meyer G., Capieau K., Audenaert K., Buchala A., Métraux J-P., Höfte M., 1999. Nanogram amounts of salicylic acid produced by the rhizobacterium P. aeruginosa 7NSK2 activate the systemic acquired resistance pathway in bean. Mol. Plant-Microbe Interact. 12: 450-458. [PubMed]

Dörffling K., Petersen W., Sprecher E., Urbasch I., Hanssen H.P., 1984. Abscisic acid in phytopathogenic fungi of the genera Botrytis, Ceratocystis, Fusarium, and Rhizoctonia. Z. Naturforsch C. 39: 683-684.

Edwards R., Kessmann H., 1992. Isoflavonoid phytoalexins and their biosynthetic enzymes. In Gurr S., McPherson M., Bowles D., eds, Molecular Plant Pathology: A Practical Approach Oxford University Press, Oxford, pp 45-62.

Elad Y., 1990. Production of ethylene by tissues of tomato, pepper, French bean and cucumber in response to infection by Botrytis cinerea. Physiol. Mol. Plant Pathol. 36: 277-287.

El Kazzaz M.K., Sommer N.F., Fortlage R.J., 1983. Effect of different atmospheres on postharvest decay and quality of fresh strawberries. Phytopathology 73: 282-285.

Faretra F., Pollastro S., 1991. Genetic bases of resistance to benzimidazole anddicarboximide fungicides in Botryotinia fuckeliana (Botrytis cinerea). Mycol. Res. 8: 943-951.

Friedrich L., Lawton K., Dietrich R., Willits M., Cade R., Ryals J., 2001. NIM1 overexpression in Arabidopsis potentiates plant disease resistance and results in enhanced effectiveness of fungicides. Mol. Plant-Microbe Interact. 14: 1114-1124. [PubMed]

Giraudat J., Parcy F., Bertauche N., Gosti F., Leung J., Morris P-C., Bouvier-Durand M., Vartanian N., 1994. Current advances in abscisic acid action and signaling. Plant Mol. Biol. 26: 1557-1577. [PubMed]

Hammond-Kosack K.E., Jones J.D.G., 1996. Resistance gene-dependent plant defense responses. Plant Cell 8: 1773-1791. [ Free Full text in PMC]

Henfling J.W.D.M., Bostock R., Kuc J., 1980. Effects of abscisic acid on rishitin and lubimin accumulation and resistance to Phythopthora infestans and Cladosporium cucumerinum in potato tuber tissue slices. Phytopathology 70: 1074-1078.

Herde O., Peña-Cortés H., Wasternack C., Willmitzer L., Fisahn J., 1999. Electric signaling and Pin2 gene expression on different abiotic stimuli depend on a distinct threshold level of endogenous abscisic acid in several abscisic acid-deficient tomato mutants. Plant Physiol. 119: 213-218. [ Free Full text in PMC]

Kettner J., Dörffling K., 1995. Biosynthesis and metabolism of abscisic acid in tomato leaves infected with Botrytis cinerea. Planta 196: 627-634.

Lund S., Stall R.E., Klee H.J., 1998. Ethylene regulates the susceptible response to pathogen infection in tomato. Plant Cell 10: 371-382. [ Free Full text in PMC]

Mauch-Mani B., Slusarenko A., 1996. Production of salicylic acid precursors is a major function of phenylalanine ammonia lyase in the resistance of Arabidopsis to Peronospora parasitica. Plant Cell 8: 203-212. [ Free Full text in PMC]

McDonald K.L., Cahill D.M., 1999. Influence of abscisic acid and the abscisic acid biosynthesis inhibitor, norflurazon, on interactions between Phytophthora sojae and soybean (Glycine max). Eur. J. Plant Path. 105: 651-658.

Salinas J., Schot C.P., 1987. Morphological and physiological aspects of B. cinerea. Mededelingen van de Faculteit Landbouwwetenschappen, Rijksuniversiteit Gent 52: 771-776.

Steadman J.R., Sequeira L., 1970. Abscisic acid in tobacco plants: tentative identification and its relation to stunting induced by Pseudomonas solanacearum. Plant Physiol. 45: 691-697.

Taylor I. B., Burbidge A., Thompson A. J., 2000. Control of abscisic acid biosynthesis. J. Exp. Bot. 62: 1563-1574.

Van Den Heuvel J., 1981. Effect of inoculum composition on infection of French bean leaves by conidia of Botrytis cinerea. Neth. J. Phytopathol. 87: 55-64.

Von Tiedemann A.V., 1997. Evidence for a primary role of active oxygen species in induction of host cell death during infection of bean leaves with Botrytis cinerea. Physiol. Mol. Plant Pathol. 50: 151-166. [PubMed]

Walton D.C., 1980. Biochemistry and physiology of abscisic acid. Annu. Rev. Plant Physiol. 31: 453-489.

Ward E.W.B., Cahill D.M., Bhattacharyya M., 1989. Abscisic acid suppression of phenylalanine ammonia lyase activity and mRNA, and resistance of soybeans to Phytophthora megasperma f. sp. glycinea. Plant Physiol. 91: 23-27.

Grau, C.R. and H.L. Bissonette, 1974. Whetzelinia stem rot of soybean in Minnesota. Plant Dis. Rep. 58:693-695.

Kim, H.S., G.L. Hartman, J.B. Manandhar, G.L. Graef, J.R. Steadman and B.W. Diers, 2000. Reaction of soybean cultivars to Sclerotinia stem rot in field, greenhouse, and laboratory evaluations. Crop Science 40:665-669.

Petzoldt, R. and M.H. Dickson, 1996. Straw test for resistance to white mold in beans. Ann. Rep. Bean Improv. Coop. 39:142-143.

del Rio, L.E., N.C. Kurtzweil, and C.R. Grau, 2000. Petiole inoculation as a tool to screen soybean germplasm for resistance to Sclerotinia sclerotiorum. Phytopathology (in press as a supplement).

Hunter, J.E., M.H. Dickson and J.A. Cigna, 1981. Limited term inoculation: a method to screen bean plants for partial resistance to white mold. Plant Dis. 65:414-417.

Cline, M.N., and B.J. Jacobsen, 1983. Methods for evaluating soybean cultivars for resistance to Sclerotinia sclerotiorum. Plant Dis. 67:784-786.

Pennypacker, B.W., and O.E. Hatley, 1995. Greenhouse technique for detection of physiological resistance to Sclerotinia sclerotiorum in soybean. Phytopathology 85:1178. Supplement.

Hunter, J.E., M.H. Dickson, M.A. Boettger and J.A. Cigna, 1982. Evaluation of plant introductions of Phaseolus spp. for resistance to white mold. Plant Dis. 66:320-322.

Boland, G.J. and R. Hall, 1986. Growthroom evaluation of soybean cultivars for resistance to Sclerotinia sclerotiorum. Can. J. Plant. Sci. 66:559-564.

Wegulo, S.N., X.B. Yang and C.A. Martinson, 1998. Soybean cultivar responses to Sclerotinia sclerotiorum in field and controlled environment studies. Plant Dis. 82:1264-1270.

Chun, D., L.B. Kao, J.L. Lockwood and T.G. Isleib, 1987. Laboratory and field assessment of resistance in soybean to stem rot caused by Sclerotinia sclerotiorum. Plant dis. 71:811-815.

Miklas, P.N., K.F. Grafton and B.D. Nelson, 1992. Screening for partial physiological resistance to white mold in dry bean using excised stems. J. Amer. Soc. Hort. Sci. 117:321-327.

Leone, G. and A.E.G. Tonneijck, 1990. A rapid procedure for screening the resistance of bean cultivars (Phaseolus vulgaris L.) to Botrytis cinerea and Sclerotinia sclerotiorum. Euphytica 48:87-90.

Steadman, J.R., K. Powers and B. Higgins, 1997. Screening common bean for white mold resistance using detached leaves. Ann. Rep. Bean Improv. Coop. 40:140-141.

Tu, J.C., 1985. Tolerance of white bean (Phaseolus vulgaris) to white mold (Sclerotinia sclerotiorum) associated with tolerance to oxalic acid. Physiological Plant Pathology 26: 111-117.

Miklas, P.N., K.F. Grafton, G.A Secor and P.E. McClean, 1992. Use of pathogen filtrate to differentiate physiological resistance of dry bean to white mold disease. Crop Sci. 32: 310-312.

Kolkman, J.M., and J.D. Kelly, 2000. An indirect test using oxalate to determine physiological resistance to white mold in common bean. Crop Sci. 40: 281-285.

Hall, R. and L.G. Phillips, 1996. Evaluation of parameters to assess resistance of white bean to white mold. Ann. Rep. Bean Improv. Coop. 39: 306-307.

Chetelat, R.T., Stamova, L., 1999. Tolerance to Botrytis cinerea. Acta Horticulturae 487:313-316.

Egashira, H., Kuwashima, A., Ishiguro, H., Fukushima, K., Kaya, T., Imanishi, S., 2000. Screening of wild accessions resistant to gray mold (Botrytis cinerea Pers.) in Lycopersicon. Acta Physiologiae plantarum 22: 324-326.

Moreau, P., Thoquet, P., Laterrot, H., Moretti, A., Olivier, J., Grimsley, N.H., 1997. A locus, ltm, controlling the development of intumescences, is present on chromosome 7. TGC Report 47: 15-16.

Nicot P.C., Baille A., 1996. Integrated control of Botrytis cinerea on greenhouse tomatoes. In: C.E. Morris, P.C. Nicot and C. Nguyen Thé (eds.). Aerial Plant Surface Microbiology. Plenum Publisher New York, ISBN 0-306-45382-7. pp 169- 189.

Nicot P.C., Pellier A.L., Moretti A., Caranta C., Rousselle P., 2000. Resistance of tomato to Botrytis cinerea. 12th. International Botrytis Symposium, Reims, 2000/07/03-08. University of Reims Champagne-Ardenne, Reims, France Abstract .P77.

Ferguson, W., and A. Padula, 1994. Economic effects of banning methyl bromide for soil Resources aid Technology Division. Economic Research Service, U.S. Department of Agriculture.

Agricultural Economic Report, Number 677. Urbasch, 1. 1984. Production of C6-wound gases; by plants and the effect on some Phytopathogenic fungi. Z Naturforsch. 39c:1003-1007.

Alleweldt, G., 1987. The contribution of grape-vine breeding to integrated pest control. In 'Integrated pest control in viniculture: proceedings of a meeting of the EC expert's group', R. Cavalloro, ed. A. A. Balkema. Rotterdam.

Braun, H.L., 1992. Host plant resistance of Pelargonium to Botrytis cinerea. M.S. Thesis. Pennsylvania State University, University Park, PA. Buck, G.J. 1973a. 'Waltztime' geranium. HortScience 8:421.

Cline, M.N., 1987. Prevent Botrytis blight on geraniums. Greenhouse Grower. Feb. 1987:88-91.

Hammer, P.E., 1992. Mechanisms of resistance to infection by Botrytis cinerea in rose flowers. PhD Thesis. Pennsylvania State University, University Park, PA.

Hausbeck. M.K., 1990. The epidemiology of Botrytis cinerea Pers. on the geranium (Pelargonium xhortorum L. H. Bailey). PhD Thesis. Pennsylvania State University, University Park, PA.
 

Laemmlen, F.F. and K.C. Sink, 1978. Evaluation of petunia cultivars for Botrytis resistance. Plant Disease Reporter 62: 361-365.

Magie, R.O., 1948. Gladiolus Botrytis control. Fla. Agr. Exp. Sta. Ann. Rept. 130.

Mansfield, J.W., 1980. The biology of Botrytis. In 'The Biology of Botrytis', J.R. Coley Smith, K. Verhoeff and W.R. Jarvis, eds. pp. 181-218. Academic Press, London.

Maude, R.B., 1980. Disease control. In 'The Biology of Botrytis', J.R. Coley-Smith, K. Verhoeff, and W.R. Jarvis, eds. pp 275-308. Academic Press, London.

McWhorter, F.P., 1939. Botrytis blight of Antirrhinum related to trichome disposition. Phytopathology 29: 651-652.

Metzler, J.T., 1975. Differences in the distribution and nature of tannin containing vactioles in the leaf tissue of Pelargonium xhortorum varieties resistant or susceptible to Botrytis cinerea. Research paper for HORT 444. Pennsylvania State University, University Park, PA.

Moorman, G.W., 1988. Technique for cycling fungicide-resistant Botrytis cinerea populations on geraniums. Phytopathology 78: 1531 (abstr.).

Northover, J. and J.A. Matizoni. 1986. Resistance of Botrytis cinerea to benomyl and iprodione in vineyards and greenhouses after exposure to the fungicides alone or mixed with captan. Plant Disease 70: 398-402.

Smith, D. and A. Onions, 1983. Preservation and Maintenance of Living Fungi. pp 11-14. C.M.I. Page Brothers Ltd., Norwich.

Vali, R.J., 1991. Comparative fitness and influence of selected fungicide regimes on dicarboximide-resistant and sensitive strains of Botrytis cinerea Pers. MS Thesis. Pennsylvania State University, University Park, PA.

Vance, C, J. Anderson and R. Sherwood, 1980. Lignin disease resistance. Ann. Rev. Phytopath. 18:259- 288.

Chase, A.R., 1990. Control of some bacterial diseases of ornamentals with Agribrom Proc. of the Fla. State Hort. Soc. 103: (in Press)

Nishijima, W., 1990. Chemical control. pp. 39-40 In. Proceedings of the Third Anthurium Blight Conference. A. Alvarez, editor.

Powell, C.C. and S. Ashley Smith, 1989. The use of Agribrom on Cyclamen. Ohio Florists' Assn. Bull. No. 716. pp- 1-3.

Cline, M.N. and D. Neely, 1983. The histology and histochemistry of the wound-healing process in geranium cuttings. J. Amer. Soc. Hort. Sci. 108: 496-502.

Hausbeck, M.K. and S.P. Pennypacker, 1991. Influence of grower activity and disease incidence on concentrations of airborne conidia of Botrytis cinerea among geranium stock plants. Plant Disease. 775: 798-802.

Phillips, D.J., D.A. Margosan, B.E. and Mackey, 1987. Size, nuclear number, and aggressiveness of Botrytis cinerea spores produced on media of varied glucose concentrations. Phytopathology. 77:1606-1608.
 

Arcioni, S, M. Pezzotti and F. Damiani, 1987. In vitro selection of alfalfa plants resistant to Fusarium oxysporum f. sp. medicaginis. Theor. Appl. Genet. 74 : 700-705.

Behnke, M., 1979. Selection of potato callus for resistance to culture filtrate of Phytophthora infestans and regeneration of resistant plant. Theor. Appl. Genet. 55 : 69-71.

Binarova, P., J. Nedelnik, M. Fellner and B. Nedbalkova, 1990. Selection for resistance to filtrate of Fusarium spp. in embryonic cell suspension cell suspension culture of Medicago sativa L. Plant Cell, Tissue and organ Culture 22 : 191-196.

Ling, D. H., P. Vidhyasehsaran, E. S. Borromeo, F. J. Zapata and T. W. Mew, 1985. In vitro screening of rice germplasm for resistance to brown spot disease using phytotoxin. Theor. Appl. Genet. 71: 133-135.

Bruck, R.I., Fry, W.E. and Apple, A.E., 1980. Effect of metalaxyl, an acylanine fungicide on developmental stages of Phytophthora infestans. Phytopathology 70: 597-601.

Leroux, P, Chabane, K., and Bompeix, G., 1993. Selection and characterization of Phytophthora parasitica mutants with ultraviolet-induced resistance to dimethomorph or metalaxyl. Pesticide Science 39: 325-329.

Nuninger, C., Steden, C., and Staub, T., 1995. The contribution of metalaxyl-based fungicide mixtures to potato late blight control. Pages 122-129 in: Phytophthora infestans 150. L.J. Dowley, E. Bannon, L.R. Cooke, T. Keane, and E. O´Sullivan, eds.. European Association for Potato Research-Pathology Section Conference. Dublin, Ireland, September 1995. Boole Press Ltd.

Nuninger, C., Watson, G., Leadbitter, N., and Ellgehausen, H. 1996. CGA 329351: Introduction of the enantiomeric form of the fungicide metalaxyl. Pages 30-35 in: Ciba’s Contribution. Paper presented at the Brighton Crop Protection Conference- Pest and Diseases, 1996. Ciba-Geigy Ltd. Basle, Switzerland.

Davidse, L.C., Looijen, D., Turkensteen, L.J., and van der. Wal, D., 1981. Ocurrence of metalaxyl-resistant strains of Phytophthora infestans in Dutch potato fields. Netherlands Journal of Plant Pathology 87:65-68.

Dowley, L.J., Cooke, L.R., and O´Sullivan, E., 1995. Development and monitoring of an anti-resistance strategy for phenylamide use against Phytophthora infestans. in: Phytophthora infestans 150. L.J. Dowley, E. Bannon, L.R. Cooke, T. Keane, E. O’ Sullivan, eds. European Association for Potato Research-Pathology Section Conference, Dublin, Ireland, September 1995. Boole Press Ltd.

Dowley, L.J., and O’ Sullivan, E., 1981. Metalaxyl-resistant strain of Phytophthora infestans (Mont.) de Bary in Ireland. Potato Research 24: 417-421.

Evenhuis, A., Schepers, H.T.A.M., Bus, C.B., and Stegeman, W., 1996. Synergy of cymoxanil and mancozeb when used to control potato late blight. Potato Research 39: 551-559.

Fry, W.E., Goodwin, S.B., Dyer, A.T., Matuszak, J.M., Drenth, A., Tooley, P.W. Sujkowski, L.S., Koh, Y.J., Cohen, B.A., Spielman, L.J., Deahl, K.L., Inglis, D.A., and Sandlan, K.P., 1993. Historical and recent migrations of Phytophthora infestans: chronology, pathways, and implications. Plant Disease 77: 653-661.

Guo, Z., Miyoshi, H, Komoyoji, T., Haga, T., and Fujita, T., 1990. Uncoupling activity of a newly developed fungicide, Fluazinam. Biochemica et Biophysica Acta 1056: 89-92.

ISK- Biotech. 1990. Bravo, Daconil 12787. Broad spectrum fungicide. ISK- Biotech Corporation. Ohio, USA.

Papavizas, G.C., O´Neill, N.R., and Lewis, J.A., 1978. Fungistatic activity of propyl - N-(alpha-dimethylaminopropyl) carbamate on Pythium spp. and its reversal by sterols. Phytopathology 68: 1667-1671.

Samoucha, Y. and Cohen, Y., 1989. Field control of potato late blight by synergistic fungicidal mixtures. Plant Dis. 73: 751-753.

Samoucha, Y. and Cohen, Y., 1990. Toxicity of propamocarb to the late blight fungus on potato. Phytoparasitica 18 (1): 27-40.

Schwinn, FJ., and Margot, P,. 1991. Control with chemicals. Pages 225-265 in: Phytophthora infestans, the cause of late blight of potato. Advances in Plant Pathology. D.S. Ingram and P.H. Williams, eds. Academic Press, London.

Trujillo, A., Navia, O. y Fernández-Northcote, E.N., 1997. Integration of resistance and chemical control for late blight. Use of a resistance activator. Página 254 en: Libro de Resumenes, IX Congreso Latinoamericano de Fitopatología. Octubre 12-17, 1997, Montevideo, Uruguay.

Wade, M., and Delp, C.J., 1985. Aims and activities of industry´s fungicide resistance action committee (FRAC). EPPO Bulletin 15: 577-583.

Williams, R.J., Gisi, U., 1992. Monitoring pathogen sensitivity to phenylamide fungicides: Principles and interpretation. EPPO Bulletin 22: 297-322.

Ziogas, B.N., Davidse, L.C., 1987. Studies on the mechanism of action of cymoxanil in Phytophthora infestans. Pestic. Biochem. Physiol. 29: 89-96.

Abney, T. S., Melgar, J. C., Richards, T.L., Scott, D. H., Grogan, J., and Young, J., 1997. New races of Phytophthora sojae with Rps1-d virulence. Plant Dis. 81:653-655.

Pratt, P. W. and Wrather, J. A., 1998. Soybean disease loss estimates for the Southern United States, 1994 to 1996. Plant Dis. 82: 114-116.

Schmitthenner, A. F., 1985. Problems and progress in control of Phytophthora root rot of soybean. Plant Dis. 69:362-368.

Schmitthenner, A. F., Hobe, M. and Bhat, R. G., 1994. Phytophthora sojae races in Ohio over a 10-year interval. Plant Dis. 78:269-276.

Schmitthenner, A. F. and Bhat, R. G., 1994. Useful Methods for Studying Phytophthora in the Laboratory. Ohio Agricultural Research and Development Center. Special Circular 143. 10 pp.

Tooley, P. W. and Grau, C. R., 1982. Races of Phytophthora megasperma f. sp. glycinea in Wisconsin. Plant Dis. 66:472-475.

Wrather, J. A., Anderson, T. R., Arsyad, D.M., Gai, J., Ploper, L. D., Porta-Puglia, A., Ram, H.H. and Yorinori, J.T., 1997. Soybean disease loss estimates for the top 10 soybean producing countries in 1994. Plant Dis. 81: 107-110.

Yang, X. B., Ruff, R. L., Meng, X. Q. and Workneh, F., 1996. Races of Phytophthora sojae in Iowa soybean fields. Plant Dis. 80: 1418-1420.

Allen E.A., Hazen B.E., Hoch H.C., Kwon Y., Leinhos M.E., Staples R.C., Stumpf M.A., Terhune B.T., 1991. Appressorium formation in response to topographical signals by 27 rust species. Phytopathology 81: 323-331.
 

Carlile M.J., 1983. Motility, taxis, and tropism in Phytophthora. In D.C. Erwin, S. Bartnicki-Garcia, P.H. Tsao, eds, Phytophthora: Its Biology, Taxonomy, Ecology, and Pathology. American Phytopathological Society Press, St. Paul, MN, pp. 95–-107

Coley-Smith J.R., 1990. White rot disease of Allium: problems of soil-borne diseases in microcosm. Plant Pathol. 39: 214-222.

Dharmatilake A.J., Bauer W.D., 1992. Chemotaxis of Rhizobium meliloti towards nodulation gene-inducing compounds from alfalfa roots. Appl. Environ. Microbiol. 58: 1153-1158.

Donaldson S.P., Deacon J.W., 1992. Role of calcium in adhesion and germination of zoospore cysts of Pythium: a model to explain infection of host plants. J. Gen. Microbiol. 138: 2051-2059.

Duniway J.M., 1976. Movement of zoospores of Phytophthora cryptogea in soils of various textures and matric potentials. Phytopathology 66: 877-882.

Duniway J.M., 1983. Role of physical factors in the development of Phytophthora diseases. In D.C. Erwin, S. Bartnicki-Garcia, P.H. Tsao, eds, Phytophthora: Its Biology, Taxonomy, Ecology, and Pathology. American Phytopathological Society, St. Paul, MN, pp. 175-187

Fisher R.F., Long S.R., 1992. Rhizobium-plant signal exchange. Nature 357: 655--659. [PubMed][Full Text]

Förster H., Tyler B.M., Coffey M.D., 1994. Phytophthora sojae races have arisen by clonal evolution and by rare outcrosses. Mol. Plant Microbe Interact. 7: 780-791.

Griffith J.M., Iser J.R., Grant B.R., 1988. Calcium control of differentiation of Phytophthora palmivora. Arch Microbiol. 149: 565-571.

Hardham A., Gubler F., 1990. Polarity of attachment of zoospores of a root pathogen and prealignment of the emerging germ tube. Cell Biol. Int. Rep. 14: 947-955.

Hawes M.C., Smith L.Y., 1989. Requirement for chemotaxis in pathogenicity of Agrobacterium tumefaciens on roots of soil-grown pea plants. J. Bacteriol. 71: 5668-5671.

Horio T., Kawabata Y., Takayama T., Tahara S., Kawabata Y., Fukushi Y., Nishimura H., Mizutani J., 1992. A potent attractant of zoospores of Aphanomyces cochlioides isolated from its host, Spinacia oleracea. Experientia 48: 410-414.

Jones S.W., Donaldson S.P., Deacon J.W., 1991. Behaviour of zoospores and zoospore cysts in relation to root infection by Pythium aphanidermatum. New Phytol. 117: 289-301.

Manavathu E.K., Thomas D.S., 1985. Chemotropism of Achlya ambisexualis to methionine and methionyl compounds. J. Gen. Microbiol. 131: 751-756.

Morris P.F., Savard M.E., Ward E.W.B., 1991. Identification and accumulation of isoflavonoids and isoflavone glucosides in soybean leaves and hypocotyls in resistance responses to Phytophthora megasperma f. sp. glycinea. Physiol. Mol. Plant Pathol. 39: 229-234.

Morris P.F., Ward E.W.B., 1992. Chemoattraction of zoospores of the soybean pathogen Phytophthora sojae by isoflavones. Physiol. Mol. Plant Pathol. 40: 17-22

Musgrave A., Ero L., Scheffer R., Oehlers E., 1977. Chemotropism of Achlya bisexualis germ hyphae to casein hydrolysate and amino acids. J. Gen. Microbiol. 101: 65-70.

Podila G.K., 1993. Chemical signals from avocado surface wax trigger germination and appressorium formation in Colletotrichum gloeosporioides. Plant Physiol. 103: 267-272. [ Free Full text in PMC]

Read N.D., Kellock L.J., Knight H., Trewavas A.J., 1992. Contact sensing during infection by fungal pathogens. In Callow J.A., Green J.R., eds, Perspectives in Plant Cell Recognition. Cambridge University Press, London, pp 137-172

Reid B., Morris B.M., Gow N.A.R., 1995. Calcium-dependent, genus specific, autoaggregation of zoospores of phytopathogenic fungi. Exp. Mycol. 19: 202-213.

Rivera-Vargas L.I., Schmitthenner A.F., Graham T.L., 1993. Soybean flavonoid effects on and metabolism by Phytophthora sojae. Phytochemistry 32: 851-857.

Ruan Y., Kotriaiah V., Straney D.C., 1995. Flavonoids stimulate spore germination in Fusarium solani pathogenic on legumes in a manner sensitive to inhibitors of cAMP-dependent protein kinase. Mol. Plant Microbe Interact. 8: 929-938.

Sekizaki H., Yokosawa R., Chinen C., Adachi H., Yamane Y., 1993. Studies on zoospore attracting activity. II. Synthesis of isoflavones and their attracting activity to Aphanomyces euteiches zoospores. Biol. Pharm Bull. 16: 698-701. [PubMed]

Stössel P., Lazarovits G., Ward E.W.B., 1980. Penetration and growth of compatible and incompatible races of Phytophthora megasperma var. sojae in soybean hypocotyl tissues differing in age. Can. J. Bot. 58: 2594-2601.

Tyler B.M., Wu M.H., Wang J.M., Cheung W., Morris P.F., 1996. Chemotactic preferences and strain variation in the response of Phytophthora sojae zoospores to host isoflavones. Appl. Environ. Microbiol. 62: 2811-2817.

Vedenyalpina E.G., Safir G.R., Niemira B.A., Chase T.E., 1993. Low concentrations of the isoflavone genistein influence in vitro asexual reproduction and growth of Phytophthora sojae. Phytopathology 86: 144-148.

Ward E.W.B., Cahill D.M., Bhattacharyya M.K., 1989. Early cytological differences between compatible and incompatible interactions of soybeans with Phytophthora megasperma f. sp. glycinea. Physiol. Mol. Plant Pathol. 34: 267-273.

Zentmyer G.A., 1961. Chemotaxis of zoospores for root exudates. Science 133: 1595-1596.
 

Caruso, F. L. and W. F. Wilcox, 1990. Phytophthora cinnamomi as a cause of root rot and dieback of cranberry in Massachusetts. Plant Disease. 74:664-667.

Drilias, M. J. and S. N. Jeffers, 1990. Detection of Phytophthora species in cranberry field soils. Phytopathology. 80: 1025.

Jeffers, S. N., 1988. Phytophthora Species Associated with a Cranberry Decline Syndrome in Wisconsin. Phytopathology. 78: 1572.

Johnson, K. B., 1987. Defoliation, disease and growth: A reply. Phytopathology. 77: 1495-1497.

Kocon, L., 1996. Drought increases Phytophthora root rot. Cranberries:7&27.

Oudemans, P. V., 1999. Phytophthora species associated with cranberry root rot and surface irrigation water in New Jersey. Plant Disease. 83: 251-258.

Sandler, H. A., L. W. Timmer, J. H. Graham and Z. S.E., 1989. Effect of fungicide applications on populations of Phytophthora parasitica on feeder rootdensities and fruit yields of citrus trees. Plant Disease. 73: 902-906.

Von Broembsen, S., 1984. Distribution of Phytophthora cinnamomi in rivers of the south-western cape province. Phytophylactica. 16: 227-229.

Zentmyer, G. A., 1980. Phytophthora cinnamomi and the diseases it causes. Monograph NO. 10. The American Phytopathological Society.

Chase, A. R., 1995. Resistance of vinca cultivars to Phytophthora aerial blight in greenhouse and field trials, 1994. Biol. Cult. Tests 10: 72.

Wick, R. L. and P. Haviland, 1994. Evaluation of fungicides for Phytophthora blight and stem rot of vinca, 1993. Fung. & Nem. Tests 49: 375.

Kuske, C. R. and D. M. Benson, 1983. Survival and splash dispersal of Phytophthora parasitica causing dieback of Rhododendron. Phytopathology 73: 1188-1191.

Dubey, T. and W. R. Stevenson, 1996. Factors affecting the movement and viability of sporangia of Phytophthora infestans in soil. Phytopathology 86: (11, supplement), S61 (Abstr.).

Dubey, T., R. V. James and W. R. Stevenson, 1997. Effect of fungicide on viability of Phytophthora infestans sporangia in soil. Phytopathology 87:S26 (Abstr.). Publication number. P-1997-0181-AMA.

Lacey, J., 1967. The role of water in the spread of Phytophthora infestans in the potato crop. Ann. Appl. Biol. 59: 245-255.

Lapwood, D. H., 1967. Factors affecting the field infection of potato tubers of different cultivars by blight (P. infestans). Ann. Appl. Biol. 85: 23-42.

Sato, N., 1979. Effect of soil temperature on the field infection of potato tubers by P. infestans. Phytopathology 69: 989-993.

Murashige, T. and F. Skoog, 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plantarum 15: 473-497.

 

Zilberstaine, M and Y. Pinkas, 1987. Detached root inoculation - A new method to evaluate resistance to Phytophthora root rot. Phytopathology 77: 841-844.

 

Benson, D.M. 1991. Detection of Phytophthora cinnamomi in azalea with commercial serological assay kits. Plant Disease 75:478-482.
 


Bu sayfada toplam 580 kaynak bulunmaktadır.

sonraki sayfa

başa dön

anasayfa


dell printer ink cartridge
dell printer ink cartridge